В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
FOXyashka2005
FOXyashka2005
18.10.2022 19:56 •  Математика

Найти множество первообразных множеств 1)y=3x+3cos(5x+1) 2)y=x^5+1/x

Показать ответ
Ответ:
Настя11111111110
Настя11111111110
29.08.2021 14:10

д) 6-\frac{4\sqrt{3} }{3}

Пошаговое объяснение:

Известно, что гипотенуза АС прямоугольного треугольника АВС равна 10 и ∠ВАС=60°.

Определим длины катетов АВ и ВС:

cos60^{0} = \frac{AB}{AC}

AB=AC·cosn60°=10·1/2=5,

sin60^{0} = \frac{BC}{AC}

BC=AC·sins60°=10·√3/2=5√3.

Собака с поводком длиной 2 двигаясь по катетам АВ и ВС прямоугольного треугольника АВС может достичь (см. рисунок) все точки от А по N и от L по C.

Поэтому, чтобы определить длина части отрезка АС, то есть длину отрезка  NL, до которой собака не может добраться определим длину отрезка АN и LC.

Так как ∠MAN=∠BAC, ∠AMN=∠ABC=90°, ∠ANM=∠ACB, то

треугольники ΔAMN и ΔABC подобны. Тогда из-за подобия треугольников ΔAMN и ΔABC:

\frac{AN}{AC}=\frac{MN}{BC} или AN=AC·MN/BC=10·2/(5√3)=4/√3=4√3/3.

Также ∠LCK=∠ACB, ∠LKC=∠ABC=90°, ∠CLK=∠CAB, то

треугольники ΔLKC и ΔABC подобны. Тогда из-за подобия треугольников ΔLKC и ΔABC:

\frac{LC}{AC}=\frac{LK}{AB} или LC=AC·LK/AB=10·2/5=4.

Тогда длина части отрезка АС, до которой собака не может добраться

NL=AC-АN-LC=10-4√3/3-4=6-4√3/3.


Собака привязана к поводку длины 2, другой конец которого может свободно скользить по катетам ав и в
0,0(0 оценок)
Ответ:
wellbiss
wellbiss
29.08.2021 14:10

д) 6-\frac{4\sqrt{3} }{3}

Пошаговое объяснение:

Известно, что гипотенуза АС прямоугольного треугольника АВС равна 10 и ∠ВАС=60°.

Определим длины катетов АВ и ВС:

cos60^{0} = \frac{AB}{AC}

AB=AC·cosn60°=10·1/2=5,

sin60^{0} = \frac{BC}{AC}

BC=AC·sins60°=10·√3/2=5√3.

Собака с поводком длиной 2 двигаясь по катетам АВ и ВС прямоугольного треугольника АВС может достичь (см. рисунок) все точки от А по N и от L по C.

Поэтому, чтобы определить длина части отрезка АС, то есть длину отрезка  NL, до которой собака не может добраться определим длину отрезка АN и LC.

Так как ∠MAN=∠BAC, ∠AMN=∠ABC=90°, ∠ANM=∠ACB, то

треугольники ΔAMN и ΔABC подобны. Тогда из-за подобия треугольников ΔAMN и ΔABC:

\frac{AN}{AC}=\frac{MN}{BC} или AN=AC·MN/BC=10·2/(5√3)=4/√3=4√3/3.

Также ∠LCK=∠ACB, ∠LKC=∠ABC=90°, ∠CLK=∠CAB, то

треугольники ΔLKC и ΔABC подобны. Тогда из-за подобия треугольников ΔLKC и ΔABC:

\frac{LC}{AC}=\frac{LK}{AB} или LC=AC·LK/AB=10·2/5=4.

Тогда длина части отрезка АС, до которой собака не может добраться

NL=AC-АN-LC=10-4√3/3-4=6-4√3/3.


Собака привязана к поводку длины 2, другой конец которого может свободно скользить по катетам ав и в
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота