В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
kirushka1010
kirushka1010
06.07.2020 02:53 •  Математика

Найти наибольшее и наименьшее значение функции f(x)=x^2/x+1 на отрезке [-0.5; 1]

Показать ответ
Ответ:
Любимка97
Любимка97
16.06.2020 20:46

ответ:0,5 и -4

Пошаговое объяснение:

f(x)=(x^2)/x+1

Формула

(U/V)'=(U'V-UV')/V^2

((x^2)/x+1)'=((x^2)'*(x+1)-x^2(x+1)')/(x+1)^2

((x^2)/x+1)'=(2*x(x+1)-x^2)/(x+1)^2

((x^2)/x+1)'=(2x^2+2x-x^2)/(x+1)^2

((x^2)/x+1)'=x^2+2x

f'(x)=x(x+2)=0

x=0,x=-2

чертим прямую расставляем знаки

подставим число 1 в производную ,чтобы узнать знак

1*(1+2)=3>0 значит +,теперь расставляем знаки (чередуем их)

_._._+++

       (-2)               0

теперь нам известны минимум и максимум функции,подставляем эти значения в функцию,вместо x и смотрим,что больше,также подставляем значения из квадратных скобок(границы)

так y(-2)=-4

y(0)=0

y(-0,5)=0.5

y(1)=0.5

все теперь сравниваем и пишем ответ.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота