В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
lfrybkrrf
lfrybkrrf
07.08.2020 06:41 •  Математика

Найти наибольшее и наименьшее значения функции на отрезке. y=\frac{x^{3} }{3} -\frac{3x^{2} }{2} +2x, [-1; 3]
Очень как можно подробнее!

Показать ответ
Ответ:
vsofa666
vsofa666
01.12.2020 00:57

наибольшее значение  1,5 при х=3

Наименьшее      -3 5/6  при х=-1

производная функции

x^2 -3x^2+2=(x-1,5)^2-0,25=(x-2)(x-1)

нули производной х=1 и х=2

Точек экстремумов две х=1 и х=2

Значит надо проверить значения на границах отрезка и в точках 1 и 2.

при х=-1

у=-1/3-2-1,5=-3 5/6

при х=1

у=1/3-1,5+2=2/6+3/6=5/6

при х=2

8/3-6+4=2/3

при х=3

9-13,5+6=1,5

Значит наибольшее значение  1,5 при х=3

Наименьшее  -3 5/6  при х=-1

0,0(0 оценок)
Ответ:
lirazelio
lirazelio
01.12.2020 00:57

у min = -3,833

у max = 1,5

Пошаговое объяснение:

1) Исследуем функцию на наличие локальных экстремумов. Иначе говоря: есть ли на участке от -1 до + 3 такие точки, в которых график функции поднимается вверх, а затем опускается вниз, либо наоборот опускается вниз, а затем поднимается; в первом случае это будет максимум функции, а во втором - минимум. При этом, если не сделать такого исследования, то можно ошибочно принять за минимум значение у в крайней левой точке, где  х = -1 (понятно, что эта функция растёт) либо (также ошибочно) принять за максимум функции крайнюю правую точку графика, где х = 3. А получится так, что выбросы вверх или вниз внутри этого участка окажутся выше или ниже. Именно с этой целью делается проверка.

2) Общее правило поиска экстремумов функции: в точках экстремумов первая производная равна нулю.

Первая производная - это касательная к графику; в точках экстремумов она равна нулю.

В данном случае - все табличные значения производной:

а) константа выносится за знак производной (в первой дроби константа = 1/3; во второй дроби константа равна 3/2; в 2х константа равна 2);

б) производная степени равна произведения показателя степени на х в степени на 1 меньше (производная х^3 = 3x^2; производная х^2 = 2х; производная х = 1).  

Получаем искомое уравнение первой производной, которое приравниваем к нулю:

х^2 - 3x + 2=0

Корнями этого уравнения являются:

х1 = 1, х2 = 2.

3) Анализируем уравнение производной до точки +1. Подставим в уравнение производной любое значение, которое находится на числовой оси х левее точки +1. Удобнее всего взять 0. При х = 0 производная равна +2. Знак плюс говорит о том, что функция возрастает, а это значит, что точка х1 = + 1 является локальным максимумом:

у = 0,833.

4) Аналогично можно убедиться в том, что на участке от х=+1 до х2=+2 функция убывает. Например, возьмём х = 1,5. Получаем ответ: - 0,25. Знак минус производной говорит о том, что функция убывает и в точке х2 = 2 принимает минимальное значение (локальный минимум):

у = 0,667.

5) После точки х=+2 производная больше 0, следовательно, функция возрастает.

6) Проверяем крайние точки на глобальные минимум и максимум:

а) при х = -1 функции равна -3,833; затем, как мы установили, она до + 1 возрастает; затем на участке от +1 до + 2 уменьшается, но только до значения 0,677, которое не перекрывает -3,833;

вывод: у min = -3,833.

б) аналогично делаем вывод о том, что при х = 3, функция принимает максимальное значение:

у max = 1,5

наименьшее значение функции у min = -3,833

наибольшее значение функции у max = 1,5

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота