В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Alexandranovik71
Alexandranovik71
14.03.2023 15:54 •  Математика

Найти наименьшее значение выражения, где x и y – любые действительные числа: 4x^2+4y^2-8xy+6x-6y+4 решить p.s. пробовал свернуть в формулы , но все равно остается лишнее

Показать ответ
Ответ:
trahtrah1
trahtrah1
18.06.2020 01:26
Нужно представить это выражение в виде функции:
f = 4(x - y)^2 +6(x - y) + 4.
Приняв х - у = z, получим квадратичную функцию - f = 4z^2 + 6z + 4.
Для нахождения минимума этой функции необходимо взять  её производную и приравнять её нулю:
 8z + 6 = 0       z = -6 / 8 = -0.75.
Минимум функции будет - 4*(-0,75)^2 + 6*(-0.75) + 4 = 1.75.
Т.е. при любых значениях х и у при условии (х - у = 1,75) будет минимальное значение выражения 4x^2+4y^2-8xy+6x-6y+4, например:

x -4 -3 -2 -1 0 1 2 3 4 2,75
y -5,75 -4,75 -3,75 -2,75 -1,75 -0,75 0,25 1,25 2,25 1
f = 26,75 26,75 26,75 26,75 26,75 26,75 26,75 26,75 26,75 26,75
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота