владеющих английским, немецким и французским АНФ=1
Будем называть людей владеющими только какими-либо языками, если они владеют этими языками и не владеют всеми остальными (для их обозначения будем использовать звездочку *).
Сразу получаем, что владеющих только английским, немецким и французским АНФ*=АНФ=1
Далее найдем владеющих только двумя языками:
владеющих только английским и немецким:
АН*=АН-АНФ*=4-1=3
владеющих только английским и французским:
АФ*=АФ-АНФ*=4-1=3
владеющих только немецким и французским:
НФ*=НФ-АНФ*=3-1=2
Наконец, найдем владеющих только одним языком:
владеющих только английским:
А*=А-АН*-АФ*-АНФ*=15-3-3-1=8
владеющих только немецким:
Н*=Н-АН*-НФ*-АНФ*=13-3-2-1=7
владеющих только французским:
Ф*=Ф-АФ*-НФ*-АНФ*=12-3-2-1=6
Общее количество людей есть сумма всех владеющих только каким-либо набором языков:
Відповідь:
0,6
Покрокове пояснення:
Подсчитаем вероятность того, что студенту попадутся 2 вопроса, которие он знает
(в билете могут бить 2 вопроса по алгебре или 2 по геометрии, или по одному из етих предметов)
Классическое определение вероятности:
р= (количество благоприятних случаев)/(всевозможние случаи)
Р{здаст екзамен}=С(35,2) /С(55,2) = 595/1485 = 0.40
Тогда
Р{не здать екзамен}= 1-0.40= 0,60
Комбинаторика : количество сочетаний С из 35 по 2 - количество всевозможних вибрать 2 вопроса из 35
35- вопроси, на которие студент знает ответи
55- количество всех вопросов
Обозначим:
владеющих английским А=15
владеющих немецким Н=13
владеющих французским Ф=12
владеющих английским и немецким АН=4
владеющих английским и французским АФ=4
владеющих немецким и французским НФ=3
владеющих английским, немецким и французским АНФ=1
Будем называть людей владеющими только какими-либо языками, если они владеют этими языками и не владеют всеми остальными (для их обозначения будем использовать звездочку *).
Сразу получаем, что владеющих только английским, немецким и французским АНФ*=АНФ=1
Далее найдем владеющих только двумя языками:
владеющих только английским и немецким:
АН*=АН-АНФ*=4-1=3
владеющих только английским и французским:
АФ*=АФ-АНФ*=4-1=3
владеющих только немецким и французским:
НФ*=НФ-АНФ*=3-1=2
Наконец, найдем владеющих только одним языком:
владеющих только английским:
А*=А-АН*-АФ*-АНФ*=15-3-3-1=8
владеющих только немецким:
Н*=Н-АН*-НФ*-АНФ*=13-3-2-1=7
владеющих только французским:
Ф*=Ф-АФ*-НФ*-АНФ*=12-3-2-1=6
Общее количество людей есть сумма всех владеющих только каким-либо набором языков:
х=А*+Н*+Ф*+АН*+АФ*+НФ*+АНФ*=8+7+6+3+3+2+1=30
ответ: 30