В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
NeSkAfE821
NeSkAfE821
05.01.2023 04:25 •  Математика

Найти область сходимости функционального ряда.


Найти область сходимости функционального ряда.

Показать ответ
Ответ:
vikakittenlove
vikakittenlove
10.01.2024 14:37
Чтобы найти область сходимости функционального ряда, нужно использовать тест сравнения или тест Даламбера.

Для начала, определим функцию, которая задает данную последовательность членов ряда. В данном случае члены ряда - это степенные функции. Мы можем рассмотреть как сумму двух рядов, так и каждый ряд отдельно.

1. Сначала рассмотрим отдельно первый ряд. Поскольку знаменатель ряда содержит только n в степени, следует использовать тест Даламбера.

a. Запишем общий член ряда в виде: an = 2^n / n^2.

b. Теперь найдем предел отношения а(n+1) / an, когда n стремится к бесконечности.

an+1 = 2^(n+1) / (n+1)^2

lim (n -> ∞) (an+1 / an) = lim (n -> ∞) [(2^(n+1) / (n+1)^2) / (2^n / n^2)]
= lim (n -> ∞) [2 * n^2 / ((n+1)^2)]
= lim (n -> ∞) [2 / (1 + 2/n + 1/n^2)]
= 2

c. Заметим, что предел отношения an+1 / an не равен нулю и не расходится к бесконечности. Таким образом, тест Даламбера не дает нам информации о сходимости первого ряда.

2. Теперь рассмотрим второй ряд. При его анализе можно воспользоваться тестом сравнения.

a. Запишем общий член ряда в виде: bn = ( -1 )^n * n^2 / 3^(n+1).

b. Выберем для сравнения сходящийся ряд. Например, сходимость геометрического ряда со слагаемым 3^n заведомо известна.

c. Применим тест сравнения: сравним модуль каждого члена ряда bn с соответствующим членом ряда 3^n.

Найдем предел отношения модуля bn / 3^n, когда n стремится к бесконечности.

lim (n -> ∞) (|bn / 3^n|) = lim (n -> ∞) [(n^2 / 3^(n+1)) / 3^n]
= lim (n -> ∞) [1 / (3 * (3/3)^n)]
= lim (n -> ∞) [1 / (3 * (1/3)^n)]
= lim (n -> ∞) [(1/3)^n / (3 * 1)]
= 0

d. Предел отношения модуля bn / 3^n равен нулю, что говорит о том, что ряд bn сходится.

3. Таким образом, ряд состоит из суммы двух членов, первый из которых не дает нам информации о его сходимости, а второй сходится.

Итак, область сходимости функционального ряда - это множество всех x, для которых ряд bn сходится. В данном случае ряд bn сходится для всех действительных x.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота