1) Посчитаем какое расстояние проехал грузовик до встречи с велосипедистом, зная что он ехал 3 часа со скоростью 65,4 км/час:
S(груз.)=v(скорость)×t(время)=65,4×3=196,2 (км)
2) Посчитаем какое расстояние проехал велосипедист за 3 часа, зная что грузовик его догнал через 196,2 км, проехав дополнительно 156,3 км (расстояние между сёлами):
196,2-156,3=39,9 (км)
3) Велосипедист проехал 39,9 км за 3 часа, тогда его скорость равна:
а)x= 2п/3+2пк, к€Z
x= -2п/3+2пк, к€Z
x= 2пк, к€Z
б) -4п; -14п/3
Пошаговое объяснение:
а)2sin^2x+cosx−1=0
2(1-cos^2 (x))+cosx -1=0
2-2cos^2(x)+cos x-1=0
-2cos^2(x)+cos x+1=0
2cos^2(x)-cos x-1=0
Пусть соs x =t, модуль t ≤1
2t^2-t-1=0
D=1+8=9
t=(1-3)/4=-1/2
t=(1+3)/4=1, отсюда
сos x=-1/2
cos x =1
x= 2п/3+2пк, к€Z
x= -2п/3+2пк, к€Z
x= 2пк, к€Z
б) с числовой окружности найдем корни, принадлежащие промежутку [−5П; −4П].
Итак, у нас на окружности получается промежуток -вся нижняя полуокружность, поэтому точка 2п/3 не подходит.
Точка 1 имеет координату -4п
Вычислим точку 2: -4п-2п/3=-14п/3
ответ: а) 2п/3+2пк; -2п/3+2пк; 2пк, к€Z
б) -4п; -14п/3
Пошаговое объяснение:
1) 20,8
3) 0,00241
5) 2,15
2) 322291
4) 0,025
6) 4
200-1,05+2,62=201,57
y-12,8=0,25
y=13,05
Дано:
S=156,3 км
t(встречи)=3 часа
v(груз.)=65,4 км/час
Найти:
v(велос.)=? км/час
Решение
1) Посчитаем какое расстояние проехал грузовик до встречи с велосипедистом, зная что он ехал 3 часа со скоростью 65,4 км/час:
S(груз.)=v(скорость)×t(время)=65,4×3=196,2 (км)
2) Посчитаем какое расстояние проехал велосипедист за 3 часа, зная что грузовик его догнал через 196,2 км, проехав дополнительно 156,3 км (расстояние между сёлами):
196,2-156,3=39,9 (км)
3) Велосипедист проехал 39,9 км за 3 часа, тогда его скорость равна:
v(велос.)=S÷t=39,9÷3=13,3 (км/час)
ответ: скорость велосипедиста равна 13,3 км/час.