В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
lavin997
lavin997
20.07.2020 18:17 •  Математика

y=3*x*y'-7*(y')^{3}
найти общее и особое решение дифференциального уравнения


найти общее и особое решение дифференциального уравнения

Показать ответ
Ответ:
BooWim
BooWim
15.10.2020 10:09

p=y'=dy=pdx\\ y=3xp-7p^3\\ dy=3pdx+(3x-21p^2)dp\\ -2pdx=(3x-21p^2)dp\\ 2x'_pp+3x=21p^2\\ x'_pp^\frac{3}{2}+\dfrac{3}{2}xp^\frac{1}{2}=\dfrac{21}{2}p^\frac{5}{2}\\ (xp^\frac{3}{2})'_p=\dfrac{21}{2}p^\frac{5}{2}\\ xp^\frac{3}{2}=3p^\frac{7}{2}+C\\ x=3p^2+Cp^{-\frac{3}{2}}\\ y=3(3p^2+Cp^{-\frac{3}{2}})p-7p^3 - общее решение в параметрической форме

Особое решение уравнения Д'Аламбера ищем по условию  

p=y'=C_1, C_1=3C_1=C_1=0=y=C_2=C_2=0=y=0 - особое решение

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота