В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
UoYFer
UoYFer
08.01.2020 02:42 •  Математика

Найти общий интеграл дифференциального уравнения
6xdx-6ydy=2x^2ydy-3xy^2 dx


Найти общий интеграл дифференциального уравнения 6xdx-6ydy=2x^2ydy-3xy^2 dx

Показать ответ
Ответ:
Mushello2
Mushello2
13.02.2021 11:35

Пошаговое объяснение:

6xdx-6ydy=2x^2ydy-3xy^2 dx

это уравнение с разделяющимися переменными. по обычному алгоритму приводим его к удобоваримому виду

1. всё что с dx влево, что с  dy вправо

6xdx+3xy^2dx=6ydy+2x^2ydy

3x(2+y^2)dx=2y(3+x^2)dy

2. делим обе части на (2+у²)(3+х²)

\frac{3x}{3+x^2} dx=\frac{2y}{2+y^2} dy

вот оно наше замечательненькое уравнение с разделяющимися переменными

теперь берем интегралы от обеих сторон и получаем решение нашего уравнения

левый интеграл

\int{\frac{3x}{3+x^2} } \, dx =\left[\begin{array}{ccc}u=x^2+3\\dx=\frac{1}{2x} du\\\end{array}\right] =\frac{3}{2} \int {\frac{1}{u } \, du =ln(x^2+3)^{3/2}+C

правый интеграл

\int {\frac{2y}{2+y^2} } \, dy =\left[\begin{array}{ccc}u=y^2+2\\dy=\frac{1}{2y} du\\\end{array}\right] =ln(y^2+2)+C

и вот наш ответ

y^2=C_1(x^2+3)^{3/2}-2

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота