А) 1. Нахождение длин ребер и координат векторов x y z Длина ребра Вектор АВ={xB-xA, yB-yA, zB-zA} 2 0 1 2.236067977 Вектор BC={xC-xB, yC-yB, zC-zB} -1 0 -3 3.16227766 Вектор АC={xC-xA, yC-yA, zC-zA} 1 0 -2 2.236067977 Вектор АS={xS-xA, yS-yA, zS-zA} 3 -2 -1 3.741657387 Вектор BS={xS-xB, yS-yB, zS-zB} 1 -2 -2 3 Вектор CS={xS-xC, yS-yC, zS-zC} 2 -2 1 3 Объем пирамиды равен: (AB{x1, y1, z1} ; AC{x2, y2, z2} ; AS{x3, y3, z3})= x3·a1+y3·a2+z3·a3. Произведение векторов a × b = {ay*bz - az*by; az*bx - ax*bz; ax*by - ay*bx}. Объем пирамиды: x y z AB*AC: 0 5 0 , V = (1/6) * 10 = 1.6666667.
б)длина высоты, опущенной на основание АВС: H=3V/Sосн Высота, опущенная на грань ABC равна: 2. Расстояние d от точки M1(x1;y1;z1) до плоскости Ax + By + Cz + D = 0 равно абсолютному значению величины:
Уравнение плоскости AВС: y-1 = 0.
с) уравнение плоскости, проходящей через точки А, В, С:Уравнение плоскости AВС: y-1 = 0. Уравнение плоскостей граней . Пусть (х1, х2, х3), (у1, у2, у3) и (z1, z2, z3) – координаты первой, второй и третьей точки соответственно. (x-x1)*(у2-y1)*(z3-z1) – (x-x1)*(z2-z1)*(y3-y1) – (y-y1)*(x2-x1)*(z3-z1) + (y-y1)*(z2-z1)*(x3-x1) + (z-z1)*(x2-x1)*(y3-y1) – (z-z1)*(y2-y1)*(x3-x1) = 0. Уравнение плоскости грани ABC: x -x1 0 0 y y1 -4 1 z z1 0 0 0 0 5 -5 0 0 0 x + 5 y + 0 z + -5 = 0 После сокращения на 5, получаем АВС: у - 1 = 0.
d) угол между прямой АД и плоскостью АВС: синус радиан градус 10 3.741657 5 18.70829 0.534522 0.563943 32.31153
e) угол между прямыми АВ и АС: AС*AВ |AС*AВ| cos α радиан градусы sin α 0 5 0 1.570796 90 1
8 2/25 : (4 1/3 + 2 2/5) - 4/15 + 27/40 : 2 1/4 + 7/15 = 1,7
1) 4 1/3 + 2 2/5 = 6 11/15
2) 8 2/25 : 6 11/15 = 1 1/5
3) 27/40 : 2 1/4 = 3/10
4) 1 1/5 - 4/15 = 14/15
5) 14/15 + 3/10 = 1 7/30
6) 1 7/30 + 7/15 = 1 7/10 = 1,7
2 + 3 1/5 + (3 1/4 - 2/3) : 3 - (2 5/18 - 17/36) : 65/18 = 12,45
1) 3 1/4 - 2/3 = 2 7/12
2) 2 5/18 - 17/36 = 1 29/36
3) 2 7/12 : 3 = 7 3/4
4) 1 29/36 : 65/18 = 1/2
5) 2 + 3 1/5 = 5 1/5
6) 5 1/5 + 7 3/4 = 12 19/20
7) 12 19/20 - 1/2 = 12 9/20 = 12,45
(AB{x1, y1, z1} ; AC{x2, y2, z2} ; AS{x3, y3, z3})= x3·a1+y3·a2+z3·a3.
Произведение векторов a × b = {ay*bz - az*by; az*bx - ax*bz; ax*by - ay*bx}.
Объем пирамиды:
x y z
AB*AC: 0 5 0 ,
V = (1/6) * 10 = 1.6666667.
б)длина высоты, опущенной на основание АВС: H=3V/Sосн Высота, опущенная на грань ABC равна: 2.
Расстояние d от точки M1(x1;y1;z1) до плоскости Ax + By + Cz + D = 0 равно абсолютному значению величины:
Уравнение плоскости AВС: y-1 = 0.
с) уравнение плоскости, проходящей через точки А, В, С:Уравнение плоскости AВС: y-1 = 0.
Уравнение плоскостей граней .
Пусть (х1, х2, х3), (у1, у2, у3) и (z1, z2, z3) – координаты первой, второй и третьей точки соответственно. (x-x1)*(у2-y1)*(z3-z1) – (x-x1)*(z2-z1)*(y3-y1) – (y-y1)*(x2-x1)*(z3-z1) + (y-y1)*(z2-z1)*(x3-x1) + (z-z1)*(x2-x1)*(y3-y1) – (z-z1)*(y2-y1)*(x3-x1) = 0.
Уравнение плоскости грани ABC:
x -x1 0 0 y y1 -4 1 z z1 0 0 0 0 5 -5 0 0
0 x + 5 y + 0 z + -5 = 0
После сокращения на 5, получаем АВС: у - 1 = 0.
d) угол между прямой АД и плоскостью АВС:
синус радиан градус
10 3.741657 5 18.70829 0.534522 0.563943 32.31153
e) угол между прямыми АВ и АС:
AС*AВ |AС*AВ| cos α радиан градусы sin α
0 5 0 1.570796 90 1