В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
svetik83
svetik83
25.10.2021 18:56 •  Математика

Найти площадь фигуры ограниченной графиками функций y=4x-x^2 , y=4-x

Показать ответ
Ответ:
Emma190
Emma190
03.10.2020 18:34
Площадь фигуры, ограниченной графиками это определённый интеграл. Для нахождения пределов интегрирования необходимо построить чертёж или решить уравнение (но лучше сделать чертёж):
4x-x²=4-x
-x²+4x+x-4=0
-x²+5x-4=0
D=5²-4*(-1)*(-4)=25-16=9
x=(-5-3)/-2=4        x=(-5+3)/-2=1
Нашли нижний х=1 и верхний х=4 пределы.
На отрезке [1;4] график функции y=4x-x² лежит выше графика функции y=4-x, поэтому площадь фигуры
S= \int\limits^4_1 {((4x-x^2)-(4-x))} \, dx= \int\limits^4_1 {(-x^2+5x-4)} \, dx =
=- \frac{x^3}{3}+ \frac{5x^2}{2}-4x|_1^4=- \frac{4^3}{3}+ \frac{5*4^2}{2}-4*4-(- \frac{1}{3}+ \frac{5*1}{2}-4*1)=
= \frac{64}{3}+ \frac{80}{2}-16+ \frac{1}{3}- \frac{5}{2}+4= 7- \frac{5}{2} =4,5 ед²

Найти площадь фигуры ограниченной графиками функций y=4x-x^2 , y=4-x
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота