В соответствии с этим строим точки для 16.1. (Картинка 1)
Комплексно-сопряженные числа — пара комплексных чисел, обладающих одинаковыми действительными частями и равными по абсолютной величине противоположными по знаку мнимыми частями.
Т.е. сопряженным для числа будет являться число .
В графическом представлении это означает, что сопряженное число будет являться отражением исходного числа относительно действительной оси (оси ).
На Картинке 2 серым обозначены исходные точки и синим - комплексно-сопряженные с ними.
Пошаговое объяснение:
Точка на комплексной плоскости изображает число
- действительная часть числа (Real)
- мнимая часть числа (Imaginary)
В соответствии с этим строим точки для 16.1. (Картинка 1)
Комплексно-сопряженные числа — пара комплексных чисел, обладающих одинаковыми действительными частями и равными по абсолютной величине противоположными по знаку мнимыми частями.
Т.е. сопряженным для числа будет являться число .
В графическом представлении это означает, что сопряженное число будет являться отражением исходного числа относительно действительной оси (оси ).
На Картинке 2 серым обозначены исходные точки и синим - комплексно-сопряженные с ними.
Взаимно простые числа - это числа, у которых нет общих делителей, кроме единицы.
Числа 720 и 612 - чётные, поэтому они не взаимно простые (на простые множители можно не раскладывать).
720 | 2 612 | 2
360 | 2 306 | 2
180 | 2 153 | 3
90 | 2 51 | 3
45 | 3 17 | 17
15 | 3 1
5 | 5 612 = 2² · 3² · 17
1
720 = 2⁴ · 3² · 5
НОД (720 и 612) = 2² · 3² = 36 - наибольший общий делитель
ответ: числа 720 и 612 не взаимно простые, так как у них есть общие делители, отличные от единицы.