В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
tnata007
tnata007
08.03.2023 16:13 •  Математика

Найти площадь фигуры ограниченных кардиоидами. Подробнее на фото. Границы интегрирования и сам интеграл исходный без вычислений.


Найти площадь фигуры ограниченных кардиоидами. Подробнее на фото. Границы интегрирования и сам интег

Показать ответ
Ответ:
Скрррррооо
Скрррррооо
09.02.2023 21:58

Пошаговое объяснение:

a)

\displaystyle \lim_{x \to \infty} \frac{3x^4-2x^3+1}{2x^2-x^4}

делим всё на х в наивысшей степени знаменателя

\displaystyle \lim_{x \to \infty} =\displaystyle \frac{\frac{3x^4}{x^4}-\frac{2x^3}{x^4}+\frac{1}{x^4} } {\frac{2x^2}{x^4} -\frac{x^4}{x^4} } = \lim_{x \to \infty} \frac{3-0+0}{0-1} =-3

б)

\displaystyle \lim_{x \to {-3}} \frac{3-2x^2-5x}{3x^2+11x+6}

поскольку и числитель и знаменатель обрашаются  в нуль при x=-3,

то х₀ = -3 это  корень обоих многочленов, а значит, каждый из многочленов  разлагается на множители, одним из которых будет

(x - (-3))

(найдем корни и применим формулу  ax² + bx + c = a(x − x₁)(x − x₂))

-2x² -5 x + 3 = 0  ⇒ х₁ = 0,5;  х₂ = -3  ⇒ -2x² -5 x + 3 = -2(х-0,5)(х+3)

3x² +11х +6= 0 ⇒ х₁ = -2/3;  х₂ = -3  ⇒ 3x² +11х +6 = 3(x + 2/3)( x+3)

\displaystyle \lim_{x \to {-3}} \frac{3-2x^2-5x}{3x^2+11x+6}= \lim_{x \to {-3}} \frac{x-0.5}{x+\frac{2}{3} } =-1

в)

\displaystyle \lim_{x \to 0}\frac{1-cos8x}{x*sin2x}

выполним элементарные преобразования(свойство первого замечательного предела)

1 - cos8x = 2sin²(4x)

sinx ≈ x

2sin²(4x) ≈ 32x²

и тогда

\displaystyle \lim_{x \to 0}\frac{1-cos8x}{x*sin2x}= \lim_{x \to 0} \frac{32x^2}{x*2x } =16

г)

\displaystyle \lim_{x \to 1} (7x-6)^{ \displaystyle \frac{x}{3x-3} }

здесь используем свойства второго замечательного предела

\displaystyle \lim_{x \to 1} (1+\frac{a}{x})^{bx}= e^{ab}

\displaystyle \lim_{x \to 1} (7x-6)^{ \displaystyle \frac{x}{3x-3} }= \lim_{x \to 1} (1+(7x-7))^{\frac{x}{3x-3} (7x-7)}= \lim_{x \to 1} (1+(7x-7))^{ 7x/3}= e^{7/3}

0,0(0 оценок)
Ответ:
gyon
gyon
27.08.2021 19:53

Какая-то непонятная смесь вопросов.

Запись (-4;1) означает, что в формулу (выражение) надо подставить х=-4 и у=1. Если равенство выполняется, то данная функция существует, и данная точка ей принадлежит

Запись у=f(-x) это общее, неконкретное выражение функциональной зависимости.Подстановка в него координат бессмысленна, она ничего не дает. Вот если бы, например, было дано у=-кх и сказано, что точка (-4;1) принадлежит этой функции, то мы можем найти к: 1=-к*(-4), откуда к=1/4 и можно говорить, что функция имеет вид у=-(1/4)х

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота