В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
natka73
natka73
04.01.2022 08:08 •  Математика

Найти площадь треугольника ABC. Напишите с подробным решением.


Найти площадь треугольника ABC. Напишите с подробным решением.

Показать ответ
Ответ:
Anastasia2003272
Anastasia2003272
10.05.2023 02:47

32 | 2               36 | 2                     48 | 2

16 | 2                18 | 2                      24 | 2

8 | 2                  9 | 3                       12 | 2

4 | 2                  3 | 3                        6 | 2

2 | 2                  1                              3 | 3

1                        36 = 2² · 3²             1

32 = 2⁵                                             48 = 2⁴ · 3

НСК (32; 36; 48) = 2⁵ · 3² = 288 - наименьшее общее кратное

288 : 32 = 9        288 : 36 = 8        288 : 48 = 6

Вiдповiдь: НСК (32; 36; 48) = 288.

0,0(0 оценок)
Ответ:
dosmailovadlet
dosmailovadlet
31.05.2023 23:02

(см. объяснение)

Пошаговое объяснение:

Чертежи приведены ко 2-ому и 3-ему случаям!

Для 1-ого случая можно использовать 1-ый чертеж с введенными в объяснении уточнениями, исключив ненужные построения.

Заметим, что треугольник AOB прямоугольный и равнобедренный. Тогда его высота (назовем ее OH) совпадает с медианой и равна 18\div2=9. По теореме о трех перпендикулярах MH будет высотой треугольника ABM, а так как OM перпендикулярна плоскости квадрата ABCD, то по теореме Пифагора MH=\sqrt{144+81}=15. Откуда S_{ABM}=\dfrac{1}{2}\times15\times18=135см².

Приведу другое решение задачи:

Проведем AO. Поскольку OM перпендикулярен плоскости, то ΔAOM прямоугольный. Заметим, что AO - половина диагонали квадрата, так как точка O - центр квадрата.

Найдем AO:

x^2=18^2+18^2\\x^2=648\\x=18\sqrt{2}\\=AO=9\sqrt{2}

По теореме Пифагора для ΔAOM:

AM=\sqrt{162+144}=3\sqrt{34}

Аналогично BM=3\sqrt{34}, так как диагонали квадрата равны.

Искать площадь по формуле Герона не удобно, так как получили значения с корнями.

Поэтому воспользуемся теоремой косинусов:

18^2=(3\sqrt{34})^2+(3\sqrt{34})^2-2\times(3\sqrt{34})^2\times\cos\alpha\\\cos\alpha=\dfrac{8}{17}\\=\sin\alpha = \dfrac{15}{17}

Тогда площадь треугольника ABM равна:

S_{ABM}=\dfrac{1}{2}\times(3\sqrt{34})^2\times\dfrac{15}{17}=\dfrac{9\times34\times15}{34}=9\times15=135

Получили, что площадь треугольника ABM равна 135см².

Замечу, что в задаче не указано, что центр квадрата - это точка O. Так принято. Однако возможен другой случай, где эти точки поменяны местами. Тогда S_{ABM}=\dfrac{1}{2}\times(9\sqrt{2})^2=81. Единицы измерения см².


Из центра квадрата АВСD со стороной 18см. к его плоскости восстановлен перпендикуляр ОМ длиной 12см.
Из центра квадрата АВСD со стороной 18см. к его плоскости восстановлен перпендикуляр ОМ длиной 12см.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота