В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
elenazeleneckaya
elenazeleneckaya
26.12.2020 17:04 •  Математика

Найти предел при х, стремящимся к бесконечности (sqrt(x^2+(x^2-1)) если можно, с объяснениями,

Показать ответ
Ответ:
vvbedash
vvbedash
06.10.2020 13:47
Имеем неопределённость оо - оо (бесконечность минус бесконечность).
Умножим и разделим исходное выражение на sqrt(x^2+1)+sqrt(x^2-1).
Получим такое выражение:
[sqrt(x^2+1) - sqrt(x^2-1)]*[sqrt(x^2+1) + sqrt(x^2-1)]/[sqrt(x^2+1) + sqrt(x^2-1)]
В числителе имеем разложение разности квадратов на множители, знаменатель так и оставляем:
[(sqrt(x^2+1))^2 - (sqrt(x^2-1))^2]/[sqrt(x^2+1) + sqrt(x^2-1)]
В числителе производим упрощения:
(sqrt(x^2+1))^2 - (sqrt(x^2-1))^2= x^2 + 1 -x^2 +1 = 2
Знаменатель вновь без изменений. После этого исходное выражение выглядит так:
2/(sqrt(x^2+1) + sqrt(x^2-1))
Вот теперь можно вместо икса подставлять бесконечность. В знаменателе получится оо + оо = оо. Сумма бесконечностей равна бесконечности. А вот разница может оказаться любой.
Наконец, нам осталось разделить 2 на оо, а это будет нуль.
ответ: lim = 0
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота