Покажем, что число 90-18=72 является наибольшим возможным.
Во-первых, легко видеть, что если в качестве большего числа взять число 90, меньшее число будет не меньше 18, поэтому разность будет не больше 72. Теперь предположим, что существует такая цифра x, отличная от 0, что 90+x-A>72, где A – меньшее число с суммой цифр 9+x. Легко видеть, что число A не меньше, чем 10x+9 (на первом месте стоит цифра x, на втором цифра 9). Тогда 90+x-A=90+x-10x-9=81-9x≤72, мы получили противоречие, значит, такой цифры x нет. Теперь предположим, что существует такая цифра y, отличная от 0, что 80+y-B>72, где B – двузначное число с суммой цифр 8+y. Ясно, что B≥17 (сумма цифр не меньше 8). Кроме того, y≤9, а значит, 80+y-B≤80+9-17=72, опять получили противоречие.
Таким образом, не существует числа от 81 до 99, которое можно было бы взять в качестве большего числа из условия и получить разность как минимум 73. Легко видеть, что числа, меньшие 81, нам не подходят, поскольку разность будет заведомо не больше 71 (вычитаемое является двузначным числом). Таким образом, мы доказали, что число 72 является наибольшим возможным.
1.Пишем вместо неравенств равенства. 1) A+B+C > 120 2) A+B > 100 3) A+C > 80 4) B+C > 60 Пишем 5) = 1) - 4) 5) А > 120 - 60 >60 кг - первый - ОТВЕТ 6) В > 100 - А > 40 кг - второй - ОТВЕТ 7) С > 80 - А > 20 кг - третий - ОТВЕТ 2.Одновременно, не может увеличиться. Если ученик высокий, то в том классе, откуда он ушел средний рост уменьшится, а в том классе, куда он пришел-увеличится. А если он низкий-то -наоборот 4.Представим, что некие команды (часть общего списка) играли только между собой. Группа таких команд может насчитывать не менее семи - ведь если бы их было меньше, они не смогли бы сыграть шесть раз с разными. Итак, допустим одну такую группу мы нашли, остаётся ещё семь команд, которые как раз составят другую аналогичную группу. Итого мы имеем две группы по семь, которые играли только внутри группы и не играли вне её. Это значит, что можно найти пару команд, не игравших друг с другом (по одной команде из каждой группы), но невозможно будет найти такую тройку (ведь в этой тройке две команды обязательно будут членами одной группы, а значит уже играли между собой)
Во-первых, легко видеть, что если в качестве большего числа взять число 90, меньшее число будет не меньше 18, поэтому разность будет не больше 72. Теперь предположим, что существует такая цифра x, отличная от 0, что 90+x-A>72, где A – меньшее число с суммой цифр 9+x. Легко видеть, что число A не меньше, чем 10x+9 (на первом месте стоит цифра x, на втором цифра 9). Тогда 90+x-A=90+x-10x-9=81-9x≤72, мы получили противоречие, значит, такой цифры x нет. Теперь предположим, что существует такая цифра y, отличная от 0, что 80+y-B>72, где B – двузначное число с суммой цифр 8+y. Ясно, что B≥17 (сумма цифр не меньше 8). Кроме того, y≤9, а значит, 80+y-B≤80+9-17=72, опять получили противоречие.
Таким образом, не существует числа от 81 до 99, которое можно было бы взять в качестве большего числа из условия и получить разность как минимум 73. Легко видеть, что числа, меньшие 81, нам не подходят, поскольку разность будет заведомо не больше 71 (вычитаемое является двузначным числом). Таким образом, мы доказали, что число 72 является наибольшим возможным.
ответ: 72.
1) A+B+C > 120
2) A+B > 100
3) A+C > 80
4) B+C > 60
Пишем 5) = 1) - 4)
5) А > 120 - 60 >60 кг - первый - ОТВЕТ
6) В > 100 - А > 40 кг - второй - ОТВЕТ
7) С > 80 - А > 20 кг - третий - ОТВЕТ
2.Одновременно, не может увеличиться. Если ученик высокий, то в том классе, откуда он ушел средний рост уменьшится, а в том классе, куда он пришел-увеличится. А если он низкий-то -наоборот
4.Представим, что некие команды (часть общего списка) играли только между собой. Группа таких команд может насчитывать не менее семи - ведь если бы их было меньше, они не смогли бы сыграть шесть раз с разными. Итак, допустим одну такую группу мы нашли, остаётся ещё семь команд, которые как раз составят другую аналогичную группу. Итого мы имеем две группы по семь, которые играли только внутри группы и не играли вне её. Это значит, что можно найти пару команд, не игравших друг с другом (по одной команде из каждой группы), но невозможно будет найти такую тройку (ведь в этой тройке две команды обязательно будут членами одной группы, а значит уже играли между собой)