1. Решим первое неравенство системы. Раскроем скобки:
7(3x + 2) - 3(7x + 2) > 2x;
21х + 14 - 21х - 6 > 2x;
8 > 2x;
2х < 8;
х < 8/2;
х < 4.
2. Решим второе неравенство системы. Чтобы произведение было меньше 0, нужно чтобы один из множителей был меньше нуля:
х - 5 < 0 ⇒ х < 5;
х + 8 < 0 ⇒ х < -8.
3. Оба решения двух неравенств системы, данной по условию, пересекаются на множестве чисел от -8 до 4, тогда ответ будет (-8; 4). Так как неравенства, данные по условию, строгие, что числа -8 и 4 не входят в множество решений.
находим производную y`=-корень(х)+3
приравниваем к нулю - корень(х)=-3
корень(х)=3
х=9
(-8; 4).
Пошаговое объяснение:
Система неравенств:
7(3x + 2) - 3(7x + 2) > 2x;
(x - 5)*(x + 8) < 0.
1. Решим первое неравенство системы. Раскроем скобки:
7(3x + 2) - 3(7x + 2) > 2x;
21х + 14 - 21х - 6 > 2x;
8 > 2x;
2х < 8;
х < 8/2;
х < 4.
2. Решим второе неравенство системы. Чтобы произведение было меньше 0, нужно чтобы один из множителей был меньше нуля:
х - 5 < 0 ⇒ х < 5;
х + 8 < 0 ⇒ х < -8.
3. Оба решения двух неравенств системы, данной по условию, пересекаются на множестве чисел от -8 до 4, тогда ответ будет (-8; 4). Так как неравенства, данные по условию, строгие, что числа -8 и 4 не входят в множество решений.
ответ: (-8; 4).