В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Pelageya2091
Pelageya2091
27.02.2022 21:45 •  Математика

Найти производную, применив логарифмическое дифференцирование:
у=x^(lnx)

Показать ответ
Ответ:
greatdannil
greatdannil
10.10.2020 23:44

y=x^{\ln x}

Прологарифмируем обе части:

\ln y=\ln x^{\ln x}

В правой части применим свойство логарифма:

\ln y=\ln x\cdot\ln x\\\ln y=(\ln x)^2

Продифференцируем обе части:

(\ln y)'=((\ln x)^2)'

Находим производные, учитывая то, что в обеих частях расположены сложные функции:

\dfrac{1}{y}\cdot y'=2\ln x\cdot(\ln x)'

\dfrac{1}{y}\cdot y'=2\ln x\cdot\dfrac{1}{x}

Выразим производную:

y'=\dfrac{2\ln x}{x}\cdot y

Подставим выражение для у:

y'=\dfrac{2\ln x}{x}\cdot x^{\ln x}

Можно применить формулу деления степеней:

y'=2x^{\ln x-1}\ln x

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота