Периметр - сумма длин всех сторон. У равнобедренного треугольника: две равные стороны и основание. Пусть а - сторона треугольника , b - основание. Р= a+a+b =30 см Следовательно может быть : 1) Основание больше на 3 см, чем сторона. Р= a+a+(a+3)= 30 см 3а+3=30 3а=30-3 3а=27 а=9 см - сторона треугольника 9+3=12 см - основание треугольника Р= 9+9+12 =30 см 2) Сторона больше на 3 см, чем основание. Р= (b+3)+(b+3) +b =30 3b+6= 30 3b=30-6 3b=24 b=8 см - основание 8+3= 11 см - сторона Р= 11+11+8=30 см. ответ: стороны равнобедренного треугольника могут быть: 1) 9 см, 9 см, 12 см 2) 11 см , 11 см, 8 см
Все решается через дискриминант просто и легко один пример разберу остальные делай сам x2-x-6=0 это выглядит как ( ах2-bx-c)= 0 у нас a=1 b= (-1) c=(-6) d ( дискриминант)= b2-4ac( для нашего уравнения) = (-1)2-4*1*(-6)=1+24=25 теперь переходим в нахождению корней т.е х1 и х2 их два корня так как дискриминант больше нуля, если бы равен нулю 1 и меньше нуля тогда бы корней не было, переходим к вычислению общая формула выгледит как x(1,)=(-b+корень квадратный из дискриминанта(d))/2а для 2 x(2,)=(-b-корень квадратный из дискриминанта(d))/2а получаем для нас x(1)=(-1+5)/2=2 х(2)=(-1-5)/2=(-6)/2=-3
У равнобедренного треугольника: две равные стороны и основание.
Пусть а - сторона треугольника , b - основание.
Р= a+a+b =30 см
Следовательно может быть :
1) Основание больше на 3 см, чем сторона.
Р= a+a+(a+3)= 30 см
3а+3=30
3а=30-3
3а=27
а=9 см - сторона треугольника
9+3=12 см - основание треугольника
Р= 9+9+12 =30 см
2) Сторона больше на 3 см, чем основание.
Р= (b+3)+(b+3) +b =30
3b+6= 30
3b=30-6
3b=24
b=8 см - основание
8+3= 11 см - сторона
Р= 11+11+8=30 см.
ответ: стороны равнобедренного треугольника могут быть:
1) 9 см, 9 см, 12 см
2) 11 см , 11 см, 8 см
x2-x-6=0 это выглядит как ( ах2-bx-c)= 0 у нас a=1 b= (-1) c=(-6)
d ( дискриминант)= b2-4ac( для нашего уравнения) = (-1)2-4*1*(-6)=1+24=25
теперь переходим в нахождению корней т.е х1 и х2 их два корня так как дискриминант больше нуля, если бы равен нулю 1 и меньше нуля тогда бы корней не было, переходим к вычислению общая формула выгледит как x(1,)=(-b+корень квадратный из дискриминанта(d))/2а для 2 x(2,)=(-b-корень квадратный из дискриминанта(d))/2а получаем для нас x(1)=(-1+5)/2=2 х(2)=(-1-5)/2=(-6)/2=-3