1. во время сессии 24 студента группы должны сдать три зачета: по , и программированию. 20 студентов сдали зачет по , 10 – по , 5 – по программиро-ванию, 7 – по и , 3 – по и программированию, 2 – по и про-граммированию. сколько студентов сдали все три зачета? 2. : (aèb) è (ab). 3. доказать, что множество точек a= {(x, y): y = ½x½, -,– 1 £ x £ 1} несчетно. 4. нарисовать диаграмму эйлера-венна для множества (а \ в) è с. 5. эквивалентны ли множества a = {y: y = x3, 1< x < 2} и b = {y: y = 3x, 3< x < ¥}? 2. раздел «отношения. функции» вариант № 7 1. задано бинарное отношение = {< 1, 1> , < 1, 2> , < 2, 1> , < 2, 4> , < 4, 2> }. найти d(), r(), , -1. проверить, будет ли отношение рефлексивным, симметрич-ным, антисимметричным, транзитивным? 2. пример отношения рефлексивного, симметричного и транзитивного. 3. дана функция f(x) = x 2 + ,отображающая множество действительных чисел r во множество действительных чисел, r® r. является ли эта функция сюръективной, инъективной, биективной? почему? 3. раздел «графы» 1. описать граф, заданный матрицей смежности, используя как можно больше характери-стик. составить матрицу инцидентности и связности (сильной связности). 2. пользуясь алгоритмом форда-беллмана, найти минимальный путь из x1 в x7 в ориентиро-ванном графе, заданном матрицей весов. 3. пользуясь алгоритмом краскала, найти минимальное остовное дерево для графа, задан-ного матрицей длин ребер. варианты 7.1. 0 0 1 1 0 0 2. ¥ 3 4 9 ¥ ¥ ¥ 3. ¥ 4 3 5 6 1 0 0 0 0 1 12 ¥ ¥ 10 4 ¥ ¥ 4 ¥ 2 ¥ 1 1 0 0 0 1 0 ¥ ¥ ¥ 2 ¥ 1 ¥ 3 2 ¥ 1 1 0 1 0 0 0 1 ¥ ¥ ¥ ¥ 7 6 ¥ 5 ¥ 1 ¥ 3 0 0 1 0 1 0 ¥ ¥ ¥ ¥ ¥ ¥ 5 6 1 1 3 ¥ 0 1 0 1 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 8 ¥ ¥ ¥ ¥ ¥ ¥ ¥ 4. раздел «булевы функции» для данной формулы булевой функции а) найти днф, кнф, сднф, скнф методом равносильных преобразований; б) найти сднф, скнф табличным способом (сравнить с сднф, скнф, полученными в пункте “а”); в) указать минимальную днф и соответствующую ей переключательную схему. варианты функция функция 7. (y x) ~(x z)
Указываем только два
следующих элемента:
23; 23; 21; 25; 19; 27; 17; 29.
Пошаговое объяснение:
Пусть первый ряд чисел:
23; 25; 27; ...
Легко увидеть закономер
ность: каждый следующий
член ряда получен из пред
ыдущего прибавлением двой
ки:
23; 25; 27;
+2 +2 +2
Значит, в первый ряд надо в
конце вписать:
27+2=29
29+2=31.
Получили:
23; 25; 27; 29; 31.
По условию задан и второй ряд
(ряд в ряде) :
23; 21; 19; ...
Можно увидеть закономер
ность: каждый следующий
член ряда получен из пред
ыдущего вычитанием двой
ки:
23; 21; 19; ...
-2 -2 -2
Значит, во второй ряд надо
вписать в конце:
19-2=17
17-2=15
Получили:
23; 21; 19; 17; 15.
Необходимо совместить
два ряда в один:
23; 23; 21; 25; 19; 27; 17; 29; 15; 31.
По условию нужно указать два
следующих элемента. Мы указа
ли четыре.
ответ профессору
оказана.