Дано: v(собств.)=18 км/ч v(теч. реки)=2 км/ч t(по теч.)=1,5 часа t(по озеру)=45 минут = часов = ч (1 час = 60 минут) Найти: S=S(по теч.)+ S (по озеру) км Решение S(расстояние)=v(скорость)*t(время) 1) v(по теч.) = v(собств.) + v(теч. реки) = 18+2=20 (км/ч) - скорость катера по течению реки. 2) S (по теч.) =v(по теч.)*t(по теч.)=20*1,5=30 (км) - проплыл катер по течению реки. 3) S(по озеру) = v(собств.)*t(по озеру) = 18* = = 13,5 (км) - проплыл катер по озеру (стоячая вода, поэтому берется только собственная скорость катера). 4) 30+13,5=43,5 (км) - проплыл катер всего. ответ: 43,5 км
Если у заданной функции y=x²-4| x |-2x раскрыть модуль, то получим 2 функции: y=x² - 4x - 2x = x² - 6x, y=x² - 4(-x) - 2x = х² + 2х. Так как у обеих функций коэффициент с=0, то их общей границей является начало координат. График заданной функции представляет собой сочетание двух парабол. У левой параболы вершина находится в точке: Хо = -в/2а = -(-6)/(2*1) = 3, Уо = 9-6*3 = -9. У правой Хо = -2/2 = -1, Уо = 1 +2*(-1) = -1.
ответ: прямая y=m имеет с графиком не менее одной, но не более трёх общих при -9 ≤ m ≤ -1.
v(собств.)=18 км/ч
v(теч. реки)=2 км/ч
t(по теч.)=1,5 часа
t(по озеру)=45 минут = часов = ч (1 час = 60 минут)
Найти:
S=S(по теч.)+ S (по озеру) км
Решение
S(расстояние)=v(скорость)*t(время)
1) v(по теч.) = v(собств.) + v(теч. реки) = 18+2=20 (км/ч) - скорость катера по течению реки.
2) S (по теч.) =v(по теч.)*t(по теч.)=20*1,5=30 (км) - проплыл катер по течению реки.
3) S(по озеру) = v(собств.)*t(по озеру) = 18* = = 13,5 (км) - проплыл катер по озеру (стоячая вода, поэтому берется только собственная скорость катера).
4) 30+13,5=43,5 (км) - проплыл катер всего.
ответ: 43,5 км
y=x² - 4x - 2x = x² - 6x,
y=x² - 4(-x) - 2x = х² + 2х.
Так как у обеих функций коэффициент с=0, то их общей границей является начало координат.
График заданной функции представляет собой сочетание двух парабол. У левой параболы вершина находится в точке:
Хо = -в/2а = -(-6)/(2*1) = 3, Уо = 9-6*3 = -9.
У правой Хо = -2/2 = -1, Уо = 1 +2*(-1) = -1.
ответ: прямая y=m имеет с графиком не менее одной, но не более трёх общих при -9 ≤ m ≤ -1.