Чтобы сравнить с числом сумму или разность, её неплохо было бы сначала посчитать. Сравнить же можно, вычитая одно число из другого. Если разность дольше нуля, то уменьшаемое больше вычитаемого, если разность меньше нуля - уменьшаемое меньше вычитаемого. Итак: 1) 5237+786=6023 6023>6000 (6023-6000=23, 23>0) 2) 1560-760=800 800=800 3) 384*200=76800 Если там действительно 7800, то 76800>7800 (76800-7800=69000 69000>0) Если всё же 78000, что выглядит несколько правдоподобнее, то 76800<78000 (76800-78000=-12000, -12000<0) 4) 3000:6=500 460<500 (460-500=-40, -40<0)
Немного недопонял вопрос задачи, но всё же попробую написать решение. Мы видим, что сумма не должна превосходить 36. Это значит, p + q(p и q - последовательные нечётные числа) ≤36. Найду эти числа, воспользовавшись методом перебора. Выпишу те пары последовательных первых и вторых нечётных чисел, сумма которых не превышает 36. Это пары:(1;3),(3;5),(5;7),(7;9),(9;11),(11;13),(13;15),(15;17),(17;19).Далее читаю вторую часть условия. На основании второго условия, сумма второго и третьего удвоенного нечётных чисел не должна быть больше 49. Произведу отбор тех чисел из приведённых пар, которые удовлетворяют этому условию.То есть произведу выборку таких пар(p;q)(p-второе нечётное число, q - третье) из вышеперечисленных, что p + 2q≤49. Этому условию удовлетворяют следующие пары:(3;5);(5;7);(7;9);(9;11);(11;13);(13;15);(15;17), поскольку 3,5,7,9,11,13,15 могут быть вторыми нечётными числами исходя из первого условия. Таким образом, только эти пары чисел могут удовлетворять приведённым двум условиям. Теперь оценим значение первого нечётного числа. Я вижу что в большинстве случаев вторые нечётные числа могут быть в роли первых предполагаемых. Значит, первое нечётное число может быть равно 3;5;7;9;11;13;15 по логике вещей. Вот такая задача )
Итак:
1) 5237+786=6023
6023>6000 (6023-6000=23, 23>0)
2) 1560-760=800
800=800
3) 384*200=76800
Если там действительно 7800, то
76800>7800 (76800-7800=69000 69000>0)
Если всё же 78000, что выглядит несколько правдоподобнее, то
76800<78000 (76800-78000=-12000, -12000<0)
4) 3000:6=500
460<500 (460-500=-40, -40<0)