y=(x+2)^2+4 - квадратичная функция, график - парабола, ветви направлены вверх, график можно получить путём параллельного переноса графика функции y=x^2 на 2 единичных отрезка влево и на 4 единичных отрезка вниз
1) D(y)=R
2) Нули: x=0 при y=0; y=0 при x=0 и x=-4
3) y<=0 при x принадлежащем [-4;0], y>0 при x принадлежащем (-бесконечность;-4) и (0;+ бесконечность)
4) Функция убывает на промежутке x принадлежащем (-бесконечность;-2) и возрастает на промежутке x принадлежащем (-2;+ бесконечность)
Пошаговое объяснение:
1. Когда могут возникнуть дробные числа?
Дробные числа возникают когда предмет ( яблоко , торт , лист бумаги) или единицу измерения ( метр , час , килограмм ) делят на несколько равных частей
2.Каким образом записывают обыкновенные дроби?
Обыкновенные дроби записывают с двух натуральных чисел и черты дроби
3.Как называют число, записанное над чертой дроби?Под чертой дроби?
Число записанное над чертой дроби называется числитель , а под чертой дроби – знаменатель
4.Что показывает знаменатель дроби?Числитель дроби?
Знаменатель показывает на сколько частей что-то разделили, а числитель показывает , сколько таких частей взяли.
y=(x+2)^2+4 - квадратичная функция, график - парабола, ветви направлены вверх, график можно получить путём параллельного переноса графика функции y=x^2 на 2 единичных отрезка влево и на 4 единичных отрезка вниз
1) D(y)=R
2) Нули: x=0 при y=0; y=0 при x=0 и x=-4
3) y<=0 при x принадлежащем [-4;0], y>0 при x принадлежащем (-бесконечность;-4) и (0;+ бесконечность)
4) Функция убывает на промежутке x принадлежащем (-бесконечность;-2) и возрастает на промежутке x принадлежащем (-2;+ бесконечность)
5) E(y)=[-4;+бесконечность).
Пошаговое объяснение: