Рассмотрим координатную плоскость хОа (для нахождения единственного решения будем использовать прямую а, параллельную оси Х). Смотря на графики и систему неравенств, нам нужно пересечение того, что внутри параболы и внутри "углов"
Тогда(с.м. прикрепленный график) единственное решение при а=-4, а=0, а=12
Главный тезис Л.Н. Толстого, что человек – это дробь: Ч/З, где числитель Ч – это его человеческая сущность, а знаменатель З – то, что он о себе думает. Лев Николаевич акцентирует внимание на том, что, чем больше З, тем меньше дробь. Да, действительно. Из двух дробей с одинаковыми Ч меньше та, у которой З больше. Так, 7/8 > 7/9 >> 7/ 900 . Мы знаем, что при З → ∞ дробь (Ч/З) → 0. Т.е. излишнее, а тем более, маниакальное, самомнение превращает в ничто человеческую личность. И даже большой Ч уже не может ситуацию. Дробь-то ничтожно мала! Но это утверждение великого писателя не так однозначно. Оно дает богатый материал для рассуждений. А жизненные наблюдения подкреплены математикой! Если Ч>З, т.е. человек недооценивает себя, то это неправильно. Неправильная дробь, так говорит нам математика. Робость сделать что-то не то, ощущение, что другие лучше него, мешает человеку и вредят обществу в целом. Ведь человек не может раскрыть свой потенциал и принести человечеству то, что мог бы, если бы верил в себя. Такого человека надо поддержать, повысить его самооценку, чтобы дробь стала приближенной к единице. Правда, при Ч=З дробь тоже неправильная, но зато это адекватная человеческая единица. А что будет, если у человека З = 0? Таких людей не существует. В этом едины и жизнь, и математика. Если человек не думает о себе, значит, он просто не может думать. В психологии есть тесты, где мнение человека о себе и своих сравнивается с мнением окружающих на этот счет. Полученный коэффициент называется уровнем притязаний. Он обратен предложенной Л.Н.Толстым дроби, но его широкое использование еще раз говорит о гениальности писателя, угадавшего методику оценки личности. Да и каждый человек, прочитавший высказывание, хочет, думаю, знать, а какой же дробью он является?
Перепишем первое неравенство системы:
a^2+7ax+8a-8x^2+28x+16
-8x^2+7x(a+4)+16+a^2+8a
Разложим квадратный трехчлен на множители.
D = 49*(a+4)^2+8*4*(16+a^2+8a)
D= 81*(a+4)^2, √D = 9*(a+4)
x1 = (-7(a+4)+9*(a+4))/(-2*8) = -1/8 *(a+4)
x2 = (-7(a+4)-9*(a+4))/(-2*8) = 4+a
Значит систему можно переписать в виде
(x-a-4)*(x+1/8 *(a+4)) ≤0
a ≤ x^2-4x
Рассмотрим координатную плоскость хОа (для нахождения единственного решения будем использовать прямую а, параллельную оси Х). Смотря на графики и систему неравенств, нам нужно пересечение того, что внутри параболы и внутри "углов"
Тогда(с.м. прикрепленный график) единственное решение при а=-4, а=0, а=12
Пошаговое объяснение:
Да, действительно. Из двух дробей с одинаковыми Ч меньше та, у которой З больше. Так, 7/8 > 7/9 >> 7/ 900 . Мы знаем, что при З → ∞ дробь (Ч/З) → 0. Т.е. излишнее, а тем более, маниакальное, самомнение превращает в ничто человеческую личность. И даже большой Ч уже не может ситуацию. Дробь-то ничтожно мала!
Но это утверждение великого писателя не так однозначно. Оно дает богатый материал для рассуждений. А жизненные наблюдения подкреплены математикой!
Если Ч>З, т.е. человек недооценивает себя, то это неправильно. Неправильная дробь, так говорит нам математика.
Робость сделать что-то не то, ощущение, что другие лучше него, мешает человеку и вредят обществу в целом. Ведь человек не может раскрыть свой потенциал и принести человечеству то, что мог бы, если бы верил в себя. Такого человека надо поддержать, повысить его самооценку, чтобы дробь стала приближенной к единице. Правда, при Ч=З дробь тоже неправильная, но зато это адекватная человеческая единица.
А что будет, если у человека З = 0? Таких людей не существует. В этом едины и жизнь, и математика. Если человек не думает о себе, значит, он просто не может думать.
В психологии есть тесты, где мнение человека о себе и своих сравнивается с мнением окружающих на этот счет. Полученный коэффициент называется уровнем притязаний. Он обратен предложенной Л.Н.Толстым дроби, но его широкое использование еще раз говорит о гениальности писателя, угадавшего методику оценки личности.
Да и каждый человек, прочитавший высказывание, хочет, думаю, знать, а какой же дробью он является?