Cos 2x можно выразить только через косинус, или только через синус, или через обе функции. cos 2x = 2cos^2 x - 1 = 1 - 2sin^2 x = cos^2 x - sin^2 x Нас интересует - через синус. 3 - 6sin^2 x - 5sin x + 1 = 0 Умножаем все на -1 6sin^2 x + 5sin x - 4 = 0 Квадратное уравнение относительно синуса D = 5^2 - 4*6(-4) = 25 + 96 = 121 = 11^2 sin x = (-5 - 11)/12 = -16/12 < -1 - не подходит sin x = (-5 + 11)/12 = 6/12 = 1/2 x = pi/6 + 2pi*k x = 5pi/6 + 2pi*k
1. В обыкновенных дробях.
а = 6 1/4 см - длина
b = 6 1/4 - 4 9/20 = 6 5/20 - 4 9/20 = 5 25/20 - 4 9/20 = 1 16/20 = 1 4/5 см - ширина
с = 1 4/5 + 3/5 = 1 7/5 = 2 2/5 см - высота
V = abc = 6 1/4 · 1 4/5 · 2 2/5 = 25/4 · 9/5 · 12/5 = (1·9·3)/(1·1·1) = 27 см³ - объём прямоугольного параллелепипеда.
2. В десятичных дробях.
а = 6 1/4 = 6,25 см - длина
b = 6,25 - 4 9/20 = 6,25 - 4,45 = 1,8 см - ширина
с = 1,8 + 3/5 = 1,8 + 0,6 = 2,4 см - высота
V = abc = 6,25 · 1,8 · 2,4 = 27 см³ - объём прямоугольного параллелепипеда
Вiдповiдь: 27 см³.
cos 2x = 2cos^2 x - 1 = 1 - 2sin^2 x = cos^2 x - sin^2 x
Нас интересует - через синус.
3 - 6sin^2 x - 5sin x + 1 = 0
Умножаем все на -1
6sin^2 x + 5sin x - 4 = 0
Квадратное уравнение относительно синуса
D = 5^2 - 4*6(-4) = 25 + 96 = 121 = 11^2
sin x = (-5 - 11)/12 = -16/12 < -1 - не подходит
sin x = (-5 + 11)/12 = 6/12 = 1/2
x = pi/6 + 2pi*k
x = 5pi/6 + 2pi*k
Отрезку [Pi; 5pi/2] принадлежит корень:
x1 = pi/6 + 2pi = 13pi/6