1) Допустим, он спросил у рыцаря. Рыцарь дал верный ответ: "Да. Среди нас хотя бы один - рыцарь". Но тут возникает неоднозначность, потому что второй может быть как рыцарем, так и лжецом, поскольку первый рыцарь, и уже выполняется условие, что среди них хоть кто-то рыцарь. 2) Допустим, он спросил у лжеца. Если лжец ответил: "Да, среди нас есть рыцарь", то среди них нет рыцаря. То есть второй - тоже лжец. Если лжец ответил: "Нет, среди нас нет рыцарей", то среди них есть рыцарь. Это второй островитянин. Если автор получил, что хотел, то ему подходит пункт 2. То есть первый лжец, а в зависимости от его ответа второй либо рыцарь, либо тоже лжец.
Но, возможно, это не всё решение задачи. Следует еще подумать над тем, а не являются ли эти островитяне единственными, кто населяет остров
2) Допустим, он спросил у лжеца. Если лжец ответил: "Да, среди нас есть рыцарь", то среди них нет рыцаря. То есть второй - тоже лжец.
Если лжец ответил: "Нет, среди нас нет рыцарей", то среди них есть рыцарь. Это второй островитянин.
Если автор получил, что хотел, то ему подходит пункт 2. То есть первый лжец, а в зависимости от его ответа второй либо рыцарь, либо тоже лжец.
Но, возможно, это не всё решение задачи. Следует еще подумать над тем, а не являются ли эти островитяне единственными, кто населяет остров
В прямоугольном параллелепипеде все грани - прямоугольники, все рёбра равны и перпендикулярны основаниям.
Формула диагонали квадрата d=a√2 ⇒
Диагональ АС основания равна 4√2
Из прямоугольного треугольника АА1С по т.Пифагора боковое ребро
АА1=√(А1С²-AC²)=√(81-32)=7 (ед. длины)
-------
Вариант решения.
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
Измерениями прямоугольного параллелепипеда являются длины трех ребер, исходящих из одной его вершины. Отсюда следует:
D²=a²+b²+c², где а и b- стороны основания, с - боковое ребро.
По условию а=b=4. D=9
81=16+16+c² ⇒
c²=81-32=49
c=7 - длина бокового ребра.