В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
olesyaprk
olesyaprk
13.03.2020 16:29 •  Математика

Найти все значения а, при которых график функции у=ах^2 - 6х+ а

Показать ответ
Ответ:
Усенька
Усенька
14.08.2020 15:20
График - парабола. Для того, чтобы она была ниже оси абсцисс (OX), нужно, чтобы её ветви были направлены вниз и точка вершины имела ординату (координату y) меньше нуля.
Оси параболы направлены вниз, если коэффициент при x^2 отрицателен. То есть a<0. Ордината вершины параболы ax^2+bx+c=0 находится формуле -\frac{b^2-4ac}{4a}.
Найдём ординату вершины заданной параболы:
-\frac{(-6)^2-4\cdot a\cdot a}{4a}=-\frac{36-4a^2}{4a}=\frac{a^2-9}a
Задача сводится к решению неравенства \frac{a^2-9}a. Как мы установили ранее, a - отрицательное число (ветви параболы направлены вниз). Значит, последняя дробь будет отрицательной тогда, когда её числитель положителен, то есть
a^2-9\ \textgreater \ 0\\(a-3)(a+3)\ \textgreater \ 0
Последнее неравенство справедливо при a\in(-\infty;\;-3)\cup(3;\;+\infty)
Условиям нашей задачи удовлетворяют все a из интервала (-\infty;\;-3)
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота