z=arctg(x/y) z'(x)=1/(1+x^2/y^2)=y^2/(y^2+x^2)y=y/(x^2+y^2) z'(y)=-x/(1+x^2/y^2)y^2=-x/(y^2+x^2) z"(x,x)=-2xy/(y^2+x^2)^2 z"(x,y)=((y^2+x^2)-y*2y)/(y^2+x^2)^2=(x^2-y^2)/(x^2+y^2)^2 z"(y,y)=2xy/(x^2+y^2)^2
=(-1/x^2)*(1/(1+(1/x)^2))=-1/(x^2+1
z=arctg(x/y)
z'(x)=1/(1+x^2/y^2)=y^2/(y^2+x^2)y=y/(x^2+y^2)
z'(y)=-x/(1+x^2/y^2)y^2=-x/(y^2+x^2)
z"(x,x)=-2xy/(y^2+x^2)^2
z"(x,y)=((y^2+x^2)-y*2y)/(y^2+x^2)^2=(x^2-y^2)/(x^2+y^2)^2
z"(y,y)=2xy/(x^2+y^2)^2
=(-1/x^2)*(1/(1+(1/x)^2))=-1/(x^2+1