Для определения числа цифр в частном следует помнить, что неполному делимому соответствует одна цифра частного, а всем остальным цифрам делимого — еще по одной цифре частного.Так же выполняется деление на любое многозначное число (трехзначное, четырехзначное и т. д.). Приведем пример:Разделим 876 на 24. Прикидка 800 : 20 = 40 показывает, что в ответе должно получиться число, близкое к 40.Как и при делении на однозначное число, будем последовательно переходить от деления более крупных счетных единиц к делению более мелких единиц.Число сотен 8 является однозначным, поэтому делим 87 десятков на 24. Получится 3 десятка и еще 15 десятков останется (87 - 3 • 24 = 15). 15 десятков и 6 единиц — это 156. А если 156 разделить на 24, то получится 6 и 12 в остатке (156 - 24 • 6 = 12). Всего получится 3 десятка и 6 единиц, то есть 36, а в остатке 12. Это записывают так:
Средне-геометрическим двух неотрицательны чисел и называют величину
Если это выражение возвести в квадрат и слева и справа, то мы получим, что:
или просто:
Тогда условие задачи, можно переформулировать так: «произведение двух самых маленьких чисел равно а произведение двух самых больших равно »
Произведение 16 можно составить из разных натруральных чисел только двумя
I.
II.
Поскольку это должны быть минимальные числа, то остальные числа могут быть только больше.
I* В первом случае остальные числа могут быть только больше т.е.:
Но произведение даже
И произведение любых двух чисел, больших, чем каждое – будет, очевидно, больше чем т.е. больше а значит, при выборе минимальных чисел в виде и – подобрать остальные числа невозможно.
II* Во втором случае остальные числа могут быть только больше т.е.:
Рассмотрим разложение на множители числа
На подойдут только числа, большие восьми и не равные друг другу, т.е. и
Таким образом Вася выбрал числа и
В диапазон между и Вася никаких чисел добавить не мог бы, поскольку тогда минимальные числа стали бы другими, и их произведение уже не было бы
Между и никаких натуральных чисел нет.
В диапазон между и Вася тоже никаких чисел добавить не мог бы, поскольку тогда максимальные числа стали бы другими, и их произведение уже не было бы
называют величину
Если это выражение возвести в квадрат и слева и справа,
то мы получим, что:
или просто:
Тогда условие задачи, можно переформулировать так: «произведение двух самых маленьких чисел равно а произведение двух самых больших равно »
Произведение 16 можно составить из разных натруральных чисел
только двумя
I.
II.
Поскольку это должны быть минимальные числа,
то остальные числа могут быть только больше.
I* В первом случае остальные числа могут быть только больше т.е.:
Но произведение даже
И произведение любых двух чисел, больших, чем каждое – будет, очевидно, больше чем т.е. больше а значит, при выборе минимальных чисел в виде и – подобрать остальные числа невозможно.
II* Во втором случае остальные числа могут быть только больше т.е.:
Рассмотрим разложение на множители числа
На подойдут только числа, большие восьми и не равные друг другу,
т.е. и
Таким образом Вася выбрал числа и
В диапазон между и Вася никаких чисел добавить не мог бы, поскольку тогда минимальные числа стали бы другими, и их произведение уже не было бы
Между и никаких натуральных чисел нет.
В диапазон между и Вася тоже никаких чисел добавить не мог бы, поскольку тогда максимальные числа стали бы другими, и их произведение уже не было бы
Сумма всех Васиных чисел:
О т в е т :