Если перед скобкой только минус - принимай, что перед ней стоит (- 1). Существует правило: a (b + c) = ab + ac. Таким образом, умножаешь множитель перед скобкой на каждый член в скобках. Если можно разложить по формуле (как в третьем примере (7 - с)²) - раскладывай. В конце сокращай подобные члены (например, если у тебя есть 5а + 8а + 13с, то это можно представить как 13а + 13с)
Существует правило: a (b + c) = ab + ac.
Таким образом, умножаешь множитель перед скобкой на каждый член в скобках.
Если можно разложить по формуле (как в третьем примере (7 - с)²) - раскладывай.
В конце сокращай подобные члены (например, если у тебя есть 5а + 8а + 13с, то это можно представить как 13а + 13с)
3a (2b - 5) + 3m (5 - 2b) = 6ab - 15a + 15m - 6bm
- (a + 3b) - 5 (a + 3b)² = - a - 3b - 5 (a² + 6аb + 9b²) = - a - 3b - 5a² - 30аb - 45b² = - а - 3b - 5a² - 30ab - 45b²
(с - 7)х - у(7 - с)² = сх - 7х - у (49 - 14с + с²) = сх - 7х - 49у + 14су - с²у
Для упрощения выражения 5x2 + (3 - 5x)(x + 11) мы начнем с того, что вспомним шаги ,которые мы должны пройти.
Итак, мы должны выполнить открытие скобок, а затем сгруппируем и выполним приведение подобных слагаемых.
Для открытия скобок применим правило умножения скобки на скобку:
5x2 + (3 - 5x)(x + 11) = 5x2 + 3 * x + 3 * 11 - 5x * x - 5x * 11 = 5x2 + 3x + 33 - 5x2 - 55x;
Скобки открыты и мы переходим к группировки и приведению подобных:
5x2 - 5x2 + 3x - 55x + 33 = x(3 - 55) + 33 = -52x + 33.
ответ: -52x + 33.
Пошаговое объяснение: