Для того чтобы найти экстремум функции найдем сперва ее производную
Теперь приравняем производную к нолю и решим полученное уравнение 6x(x-1)=0 6х=0 х-1=0 х=0 х=1 Нанесем полученные точки на ось Ох и определим знак функции. ОБЯЗАТЕЛЬНО НАРИСОВАТЬ. таким образом получим три промежутка 1. (-беск; 0): у(-2)=6*(-2)(-2-1)=-12*(-3)=36, >0 2. [0;1]: y(0,5)=6*0,5*(0,5-1)=3*(-0,5)-1,5 <0 3.(1;беск): y(2) 6*2(2-1)=12*(1)=12, >0 И так видим что при прохождении точек х=0 и х=1 функции меняет свой знак следовательно эти точки и являются экстремумами функции ответ:х=0 и х=1
Теперь приравняем производную к нолю и решим полученное уравнение
6x(x-1)=0
6х=0 х-1=0
х=0 х=1
Нанесем полученные точки на ось Ох и определим знак функции.
ОБЯЗАТЕЛЬНО НАРИСОВАТЬ. таким образом получим три промежутка
1. (-беск; 0): у(-2)=6*(-2)(-2-1)=-12*(-3)=36, >0
2. [0;1]: y(0,5)=6*0,5*(0,5-1)=3*(-0,5)-1,5 <0
3.(1;беск): y(2) 6*2(2-1)=12*(1)=12, >0
И так видим что при прохождении точек х=0 и х=1 функции меняет свой знак следовательно эти точки и являются экстремумами функции
ответ:х=0 и х=1
Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).
Решение находим с калькулятора.
Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).
Координаты векторов находим по формуле:
X = xj - xi; Y = yj - yi; Z = zj - zi
здесь X,Y,Z координаты вектора; xi, yi, zi - координаты точки Аi; xj, yj, zj - координаты точки Аj;
Например, для вектора AB
X = x2 - x1; Y = y2 - y1; Z = z2 - z1
X = 5-2; Y = 5-(-1); Z = 4-1
AB(3;6;3), AC(1;3;-2), AD(2;2;2), BC(-2;-3;-5), BD(-1;-4;-1), CD(1;-1;4).
Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен:
Находим определитель матрицы: ∆ = 3 • (3 • 2-2 • (-2))-1 • (6 • 2-2 • 3)+2 • (6 • (-2)-3 • 3) = -18
(Если что это как пример так ты сможешь сделать это одно и тоже почти!)