В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
aryka2
aryka2
03.12.2022 12:46 •  Математика

Назовём собаку блохастой, если на ней сидит не меньше шести блох. однажды в жучкином переулке встретились 26 блохастых и 5 нормальных собак. по свистку некоторые блохи перескочили с одной собаки на другую. могло ли после свистка не остаться ни одной блохастой собаки?

Показать ответ
Ответ:
Kira1574
Kira1574
08.10.2020 16:03
Возьмём минимальное количество блох на блохастой собаке и на нормальное. (это случай, когда больше всего блох может перескочить сделав собак не блохастыми) (другие случаи рассматривать не будем)
26 блохастых тогда минимум блох на них по 6 на каждой. Для того, чтобы собаки перестали быть блохастыми нужно, чтобы с каждой собаки перешло по 1 блохе, тогда перейдёт минимум 26 блох, тогда те собаки перестанут быть блохастыми. Для того, что нормальные собаки на них должно быть более 5 блох, тогда всего максимум блох может перейти на них всех, чтобы собаки оставались нормальными 5*5=25, тогда 26-25=1 собака как минимум останется блохастой.
ответ: нет, не могло.
0,0(0 оценок)
Ответ:
nik896
nik896
08.10.2020 16:03
Допустим на каждой блохастой собаке будет сидеть ровно по 6 блох, а на пяти-0 блох. После свистка с 5 блохастых блоха перескочила на 5 нормальных, неблохастых стало 10, однако оставшиеся собаки обменяются блохами и у них также останется по 6 блох.
Мой ответ: не может
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота