Мысль 1 - какие бывают масштабы? - на рисунке в приложении карта случайной местности. Три вида:численный, именованный, линейный.
Мысль 2 - как легче вычислять - делить или умножать.
Дано: М = 1:200 - численный масштаб,
N₁ = 7 м - реальный отрезок, N₂ = 5.2 м - реальный радиус.
Найти: L₁=? L₂=? Изобразить в масштабе.
Мысль 3 - вычислим через численный масштаб и умножаем.
1) L₁ = N₁ * M = 7(м)* (1/200) = 7/200 =0,035 (м) = 3,5 см = 35 мм. - длина отрезка - ответ.
Мысль 4 - вычислим через именованный масштаб, переведём в него и будем делить.
В 1 см = 200 см = 2 м или k = 2 м/см - именованный масштаб.
2) L₁ =N₁ : k = 7 (м) : 2 (м/см) = 3,5 см = 35 мм - длина отрезка - ответ - (гораздо проще оказалось).
Аналогично два варианта для задачи б) - радиус N₂ = 5,2 м.
3) L₂ = 5.2 (м) * 1/200 = 0,026 м = 2,6 см = 26 мм - радиус - ответ.
4) L₂ = 5.2 (м) : 2(м/см) = 2,6 см = 26 мм - радиус - ответ.
Мысль 5 - изображаем результаты на рисунке в приложении. Потребуется циркуль.
ДОПОЛНИТЕЛЬНО:
ИНТЕРЕСНА ОБРАТНАЯ ЗАДАЧА - как по карте или плану найти реальные размеры. Для этого можно использовать линейный нониус, который обычно есть на транспортире.
Привести дроби к общему знаменателю:
= (120/200 + 175/200 + 96/200 ) × 100/3 =
= 391/200 × 100/3 =
= (391 × 100) / (200 × 3)=
= ( 391 × 1) / (2× 3) =
= 391/6 = 65 1/6
Раскрыть скобки:
= 3/5 × 100/3 + 7/8 × 100/3 + 12/25 × 100/3 =
= 20/1 + 175/6 + 16/1 =
= 20 + 29 1/6 + 16 =
= 65 1/6
2) (10 1/2 + 9 1/4 ) × (10 1/2 - 9 1/4) = 24 11/16
Посчитать сумму и разность в скобках, затем выполнить умножение:
= (10 2/4 + 9 1/4) × (10 2/4 - 9 1/4) =
= 19 3/4 × 1 1/ 4 =
= 79/4 × 5/4 = 395/16 =
= 24 11/16
Воспользоваться формулой сокращенного умножения (разность квадратов) :
= (10 1/2 ) ² - (9 1/4)² =
= (21/2)² - (37/4)² =
= 441/4 - 1369/16 =
= (1764 - 1369) / 16=
= 395/16 = 24 11/16
Решаем силой Разума - сначала думаем.
Мысль 1 - какие бывают масштабы? - на рисунке в приложении карта случайной местности. Три вида:численный, именованный, линейный.
Мысль 2 - как легче вычислять - делить или умножать.
Дано: М = 1:200 - численный масштаб,
N₁ = 7 м - реальный отрезок, N₂ = 5.2 м - реальный радиус.
Найти: L₁=? L₂=? Изобразить в масштабе.
Мысль 3 - вычислим через численный масштаб и умножаем.
1) L₁ = N₁ * M = 7(м)* (1/200) = 7/200 =0,035 (м) = 3,5 см = 35 мм. - длина отрезка - ответ.
Мысль 4 - вычислим через именованный масштаб, переведём в него и будем делить.
В 1 см = 200 см = 2 м или k = 2 м/см - именованный масштаб.
2) L₁ =N₁ : k = 7 (м) : 2 (м/см) = 3,5 см = 35 мм - длина отрезка - ответ - (гораздо проще оказалось).
Аналогично два варианта для задачи б) - радиус N₂ = 5,2 м.
3) L₂ = 5.2 (м) * 1/200 = 0,026 м = 2,6 см = 26 мм - радиус - ответ.
4) L₂ = 5.2 (м) : 2(м/см) = 2,6 см = 26 мм - радиус - ответ.
Мысль 5 - изображаем результаты на рисунке в приложении. Потребуется циркуль.
ДОПОЛНИТЕЛЬНО:
ИНТЕРЕСНА ОБРАТНАЯ ЗАДАЧА - как по карте или плану найти реальные размеры. Для этого можно использовать линейный нониус, который обычно есть на транспортире.