ответ
672, 673, 674
или
1009, 1010
Пояснения
Последовательность натуральных чисел - это арифметическая последовательность
Таким образом
Пусть a₁ - первое число в данной последовательности
Тогда
d = 1
S = ( 2a₁+d(n-1) )n/2 = 2019 = 3*673
(2a₁+n -1)n = 4038 = 6*673 = 2*3*673
Так как a₁, n - целые, то возможны варианты
n = 1, (2a₁) = 4038, a₁ = 2019, последовательность 2019, состоящую из одного члена последовательностью не считаем
n = 2, (2a₁+1)2 = 4038, a₁ = 1009, последовательность 1009, 1010
n = 3, (2a₁+2)3 = 4038, a₁ = 672, последовательность 672, 673, 674
n = 673, (2a₁+672)673 = 4038, a₁ = (6 - 672)/2 не подходит т. к. a1 ≥ 1
n = 1346, (2a₁+1345)1346 = 4038, a₁ = (3 - 1345)/2 не подходит т. к. a1 ≥ 1
n = 2019, (2a₁+2018)2019 = 4038, a₁ = (2 - 2018)/2 не подходит т. к. a1 ≥ 1
n = 2019, (2a₁+4037)4038 = 4038, a₁ = (1 - 4037)/2 не подходит т. к. a1 ≥ 1
Даны прямые 3х +4y — 30 = 0, 3х – 4y +12 = 0 и окружность радиуса R = 5.
Находим точку пересечения прямых как вершину заданного четырёхугольника.
3х +4y — 30 = 0,
3х – 4y +12 = 0, сложим уравнения.
6х — 18 = 0, х = 18/6 = 3. у = (3х + 12\4 = (3*3 + 12)/4 = 21/4 = 5,25.
Точка А(3; (21/4)).
Находим угол φ между двумя прямыми, заданными общими уравнениями A1x + B1y + C1 = 0 и A2x + B2y + C2 = 0, который вычисляется по формуле:
cos φ = (A1A2 + B1B2)/(√(A1² + B1²)*√(A2² + B2²)).
По формуле находим:
cos φ = (3*3 + 4*(-4)/(√(3² + 4²)*√(3² + (-4)²) = -7/25.
cos φ = -7/25 = -0,28.
φ = arccos(-0,28) = 1,85459 радиан или 106,2602 градуса.
Отрезок, соединяющий вершину А и центр окружности как биссектриса делит этот угол пополам.
Найдём его тангенс.
tg(φ/2) = √((1 - cos φ)/(1 + φ)) = √((1 - (-7/25))/(1 + (-7/25)) = √(32/18) = 4/3.
Теперь можно найти сторону "а" четырёхугольника.
а = R/tg(φ/2) = 5/(4/3) = 15/4 = 3,75.
Площадь четырёхугольника равна площади двух равных прямоугольных треугольников.
S = 2*((1/2)*5*(15/4)) = 75/4 = 18,75 кв.ед.
ответ
672, 673, 674
или
1009, 1010
Пояснения
Последовательность натуральных чисел - это арифметическая последовательность
Таким образом
Пусть a₁ - первое число в данной последовательности
Тогда
d = 1
S = ( 2a₁+d(n-1) )n/2 = 2019 = 3*673
(2a₁+n -1)n = 4038 = 6*673 = 2*3*673
Так как a₁, n - целые, то возможны варианты
n = 1, (2a₁) = 4038, a₁ = 2019, последовательность 2019, состоящую из одного члена последовательностью не считаем
n = 2, (2a₁+1)2 = 4038, a₁ = 1009, последовательность 1009, 1010
n = 3, (2a₁+2)3 = 4038, a₁ = 672, последовательность 672, 673, 674
n = 673, (2a₁+672)673 = 4038, a₁ = (6 - 672)/2 не подходит т. к. a1 ≥ 1
n = 1346, (2a₁+1345)1346 = 4038, a₁ = (3 - 1345)/2 не подходит т. к. a1 ≥ 1
n = 2019, (2a₁+2018)2019 = 4038, a₁ = (2 - 2018)/2 не подходит т. к. a1 ≥ 1
n = 2019, (2a₁+4037)4038 = 4038, a₁ = (1 - 4037)/2 не подходит т. к. a1 ≥ 1
Даны прямые 3х +4y — 30 = 0, 3х – 4y +12 = 0 и окружность радиуса R = 5.
Находим точку пересечения прямых как вершину заданного четырёхугольника.
3х +4y — 30 = 0,
3х – 4y +12 = 0, сложим уравнения.
6х — 18 = 0, х = 18/6 = 3. у = (3х + 12\4 = (3*3 + 12)/4 = 21/4 = 5,25.
Точка А(3; (21/4)).
Находим угол φ между двумя прямыми, заданными общими уравнениями A1x + B1y + C1 = 0 и A2x + B2y + C2 = 0, который вычисляется по формуле:
cos φ = (A1A2 + B1B2)/(√(A1² + B1²)*√(A2² + B2²)).
По формуле находим:
cos φ = (3*3 + 4*(-4)/(√(3² + 4²)*√(3² + (-4)²) = -7/25.
cos φ = -7/25 = -0,28.
φ = arccos(-0,28) = 1,85459 радиан или 106,2602 градуса.
Отрезок, соединяющий вершину А и центр окружности как биссектриса делит этот угол пополам.
Найдём его тангенс.
tg(φ/2) = √((1 - cos φ)/(1 + φ)) = √((1 - (-7/25))/(1 + (-7/25)) = √(32/18) = 4/3.
Теперь можно найти сторону "а" четырёхугольника.
а = R/tg(φ/2) = 5/(4/3) = 15/4 = 3,75.
Площадь четырёхугольника равна площади двух равных прямоугольных треугольников.
S = 2*((1/2)*5*(15/4)) = 75/4 = 18,75 кв.ед.