1. Дано множество А ={1, 2, 3, 4, 5, 6} . Составьте множество В состоящее из трех элементов, если известно что А принадлежит Вответ В ={1, 2, 3}3. На дне здоровья участвовало 200 учащихся. 77 из них участвовали в марафоне, а 25 участвовало и в марафоне и в командных играх. 67 учащихся не участвовали ни в одном ни в другом виде. Используя диаграмму Эйлера - Венна , найдите количество учащихся которые участвовали только в командных играх.1) 77-25=52 (уч) только в марафоне2) 200-(77+67)=56 (уч) только в команд. играх
Парабола является кривой, представляющей собой геометрическое место точек,
равноудалённых от фокуса параболы и другой заданной прямой. Эта кривая, а также
соответствующий ей в трёхмерном мире эллиптический параболоид, играют важную
роль во многих физических процессах, в связи с чем нашли широкое применение и
рас во многих инженерных, технических и др. устройствах, в
архитектуре. Парабола изображена на рисунке 1.
Парабола является линией конического сечения, открытие которых
приписывают Менехему. Учение о конических сечениях было развито Евклидом, а
также Аполлонием Пергским, который рассмотрел в своём труде все конические
сечения, а также их свойства, причём труды Аполлония примечательны тем, что они
представляют собой синтез аналитической и начертательной геометрии.
Важным свойством параболы является то, что любой предмет в поле тяготения
перемещается по параболе при отсутствии сопротивления воздуха или в условиях,
когда мы этим фактором можем пренебречь.
Наиболее значимым является т.н. «оптическое свойство» параболы - пучок
лучей, параллельных оси параболы, отражаясь в параболе, собирается в её фокусе. Изза этого параболе нашли самые различные применения в различных оптических
устройствах, от ламп и до телескопов. В силу корпускулярно-волновой природы света,
оптические свойства параболы были переложены на составные части различных
радиопередающих устройств, например, узконаправленные, спутниковые антенны и
Пошаговое объяснение:
Парабола является кривой, представляющей собой геометрическое место точек,
равноудалённых от фокуса параболы и другой заданной прямой. Эта кривая, а также
соответствующий ей в трёхмерном мире эллиптический параболоид, играют важную
роль во многих физических процессах, в связи с чем нашли широкое применение и
рас во многих инженерных, технических и др. устройствах, в
архитектуре. Парабола изображена на рисунке 1.
Парабола является линией конического сечения, открытие которых
приписывают Менехему. Учение о конических сечениях было развито Евклидом, а
также Аполлонием Пергским, который рассмотрел в своём труде все конические
сечения, а также их свойства, причём труды Аполлония примечательны тем, что они
представляют собой синтез аналитической и начертательной геометрии.
Важным свойством параболы является то, что любой предмет в поле тяготения
перемещается по параболе при отсутствии сопротивления воздуха или в условиях,
когда мы этим фактором можем пренебречь.
Наиболее значимым является т.н. «оптическое свойство» параболы - пучок
лучей, параллельных оси параболы, отражаясь в параболе, собирается в её фокусе. Изза этого параболе нашли самые различные применения в различных оптических
устройствах, от ламп и до телескопов. В силу корпускулярно-волновой природы света,
оптические свойства параболы были переложены на составные части различных
радиопередающих устройств, например, узконаправленные, спутниковые антенны и
проч.