Если бы скорости поездов были одинаковы, то поезда встретились бы на середине расстояния между городами, т.е. каждый бы до момента встречи (через 10 ч):
s=1580:2=790 км.
Но т.к. скорость одного поезда на 6 км/ч больше, чем другого, то за 10 часов этот поезд на 6 км/ч*10 ч=60 км больше, чем второй. Точка встречи поездов смещена от середины пути на вот эти 60 км. Половину этих 60 км - 30 км "быстрый" поезд, и половину "недошел" другой, более медленный.
Т.о. первый поезд ("быстрый" до места встречи расстояние:
s₁=790 км + 60:2 км = 790+30=820 км,
второй поезд ("медленный" до места встречи расстояние
s₂=790 км - 60:2 км = 790-30=760 км.
А, т.к. оба расстояния пройдены за одинаковое время 10 ч, то скорости:
Для начала переведём все числа в неправильные дроби умножив знаменатель на целое число, а затем прибвавим числитель (для примера 1(целая) и 1/2 - это 2 умножить на 1 и +1. Получается 3/2).
82 км/ч и 76 км/ч
Пошаговое объяснение:
Если бы скорости поездов были одинаковы, то поезда встретились бы на середине расстояния между городами, т.е. каждый бы до момента встречи (через 10 ч):
s=1580:2=790 км.
Но т.к. скорость одного поезда на 6 км/ч больше, чем другого, то за 10 часов этот поезд на 6 км/ч*10 ч=60 км больше, чем второй. Точка встречи поездов смещена от середины пути на вот эти 60 км. Половину этих 60 км - 30 км "быстрый" поезд, и половину "недошел" другой, более медленный.
Т.о. первый поезд ("быстрый" до места встречи расстояние:
s₁=790 км + 60:2 км = 790+30=820 км,
второй поезд ("медленный" до места встречи расстояние
s₂=790 км - 60:2 км = 790-30=760 км.
А, т.к. оба расстояния пройдены за одинаковое время 10 ч, то скорости:
v₁=820:10=82 км/ч
v₂=760:10=76 км/ч
Для начала переведём все числа в неправильные дроби умножив знаменатель на целое число, а затем прибвавим числитель (для примера 1(целая) и 1/2 - это 2 умножить на 1 и +1. Получается 3/2).
13/5:(n+17/14)-7/5=1/3
Перенесём 1/3 в левую часть:
13/5:(n+17/14)-7/5-1/3=0
Приведём к общему знаменателю:
13/5:(n+17/14)-21/15-5/15=0
13/5:(n+17/14)-26/15=0
То же самое делаем с n:
13/5:((14n+17)/14)-26/15=0
Пользуемся свойством деления дробей (a/b:c/d=a/d*d/c):
13/5*(14/14n+17)-26/15=0
(182/(70n+85))-26/15=0
Накрест умножаем, перенеся в левую часть:
182*15=1820n+2210
n=2/7