Несколько шаров радиусом r=20см и массой m1=200 г закреплены на стержнях массой m2 = 10 г , длина которых l=50 см значительно превышает их толщину. Найти моменты инерции J систем тел относительно заданной оси AA.
y"=2y' - это линейное однородное ДУ второго порядка с постоянными коэффициентами.
y"-2y'=0 (1)
Составим и решим характеристическое уравнение:
р²-2p=0
p*(p-2)=0
p₁=0
p₂=2
Получены два различных действительных корня, поэтому общее решение имеет вид:
y=C₁*e^(p₁*x)+C₂*e^(p₂*x), где p₁ и p₂ - корни характеристического уравнения, C₁ и C₂ - константы.
y=C₁*e^(0*x)+C₂*e^(2*x)
y=C₁+C₂*e^(2*x) - общее решение (2).
Теперь нужно найти частное решение, соответствующее заданным начальным условиям. Наша задача состоит в том, чтобы найти такие значения констант С₁ и С₂, чтобы выполнялись оба условия.
Сначала используем начальное условие y(0)=3/2:
y(0)=C₁+C₂*e^(2*0)=C₁+C₂
Согласно начальному условию получаем первое уравнение:
C₁+C₂=3/2 (3)
Далее берем общее решение (2) и находим производную:
d²y/dx²=2*dy/dx
Можно переписать:
y"=2y' - это линейное однородное ДУ второго порядка с постоянными коэффициентами.
y"-2y'=0 (1)
Составим и решим характеристическое уравнение:
р²-2p=0
p*(p-2)=0
p₁=0
p₂=2
Получены два различных действительных корня, поэтому общее решение имеет вид:
y=C₁*e^(p₁*x)+C₂*e^(p₂*x), где p₁ и p₂ - корни характеристического уравнения, C₁ и C₂ - константы.
y=C₁*e^(0*x)+C₂*e^(2*x)
y=C₁+C₂*e^(2*x) - общее решение (2).
Теперь нужно найти частное решение, соответствующее заданным начальным условиям. Наша задача состоит в том, чтобы найти такие значения констант С₁ и С₂, чтобы выполнялись оба условия.
Сначала используем начальное условие y(0)=3/2:
y(0)=C₁+C₂*e^(2*0)=C₁+C₂
Согласно начальному условию получаем первое уравнение:
C₁+C₂=3/2 (3)
Далее берем общее решение (2) и находим производную:
y'=(C₁+C₂*e^(2*x))'=0+2*C₂*e^(2*x)=2*C₂*e^(2*x)
Используем второе начальное условие y'(0)=1:
y'(0)=2*C₂*e^(2*0)=2*C₂
2*C₂=1
C₂=1/2 (4)
Теперь поддставим (4) в (3):
C₁+1/2=3/2
C₁=1 (5)
Остается подставить (4) и (5) в (2):
y=1+3/2*e^(2*x) - частное решение.
ответ: y=C₁+C₂*e^(2*x) - общее решение
y=1+3/2*e^(2*x) - частное решение
Подробнее - на -
Пошаговое объяснение:
Подарок упакован в коробку, которая имеет форму прямоугольного параллелепипеда. Длина двух сторон грани основания — 7
см и 9 см, длина бокового ребра коробки — 16 см. Определи необходимую длину ленты для упаковки, если для завязывания банта уйдет 31 см ленты.
Пошаговое объяснение:
Даны: длина = 7 см, ширина = 9 см, высота = 16 см.
Лента при упаковки обычной коробки, обматывается два раза - по периметру фронтальной и боковой грани коробки.
И дополнительно завязывается бант.
Прямоугольник фронтальной грани коробки образован длиной и высотой коробки, а его периметр равен 50 см.
1) 2 * (9 + 16) = 2 * 25 = 50 (см) периметр фронтальной грани.
Прямоугольник боковой грани коробки образован шириной и высотой коробки, а его периметр равен 46 см.
2) 2 * (7 + 16) = 2 * 23 = 46 (см) периметр боковой грани.
3) 50 + 46 + 31 = 127 (см) длина ленты с учетом банта.
ответ: 127 см.