Так как as=bs=8 и bc=ac=17, то вершина пирамиды S лежит в вертикальной плоскости.Проведём вертикальную секущую плоскость через вершины S и С. В сечении имеем треугольник SDC, где D - основание высоты из точки С равнобедренного треугольника АВС. Находим стороны треугольника SDC: DC = √(17² - (1/2)4√7)²) = √(289 - 28) = √261 = 16.15549. SD = √(8² - (1/2)4√7)²) = √(64 - 28) = √36 = 6. Высота из вершины S является высотой пирамиды SО. Находим её по формуле:
Подставим значения: a b c p 2p 16.155494 15 6 18.577747 37.15549442 и получаем высоту SО = 90 / √261 = 30 / √29 = 5.570860145. Площадь основания пирамиды находим по формуле Герона: a b c p 2p S 17 17 10.583005 22.291503 44.58300524 85.48684109. Площадь основания можно выразить так: S = 85.48684109 = √7308 = 6√(7*29). Тогда получаем объём пирамиды: V = (1/3)S*H = (1/3)*(6√(7*29))*(30/√29) = 60/√7 = 22,67787 куб. ед.
Ш47 Вероятность: примеры и задачи. | 2-е изд., стереотипное. | М.:
МЦНМО, 2008. | 64 с.
ISBN 978-5-94057-284-8
На примерах излагаются первые понятия теории вероятностей (вероятность события, правила подсчёта вероятностей, условная вероятность, независимость событий, случайная величина, математическое ожидание, дисперсия).
Брошюра рассчитана на школьников и учителей, свободно оперирующих с дробями
и процентами.
Первое издание книги вышло в 2007 г.
ББК 22.1
Оригинал-макет предоставлен автором. Рисунок на обложке выполнен
А. Верещагиной и публикуется с её разрешения.
Книга является свободно рас электронная версия доступна
по адресу ftp://ftp.mccme.ru/users/shen/proba.zip
Автор благодарен Ю. Н. Тюрину, А. А. Макарову, И. Р. Высоцкому и
И. В. Ященко, без которых эта брошюра никогда не была бы написана.
Рецензент и редактор Николай Александрович Яковлев
В сечении имеем треугольник SDC, где D - основание высоты из точки С равнобедренного треугольника АВС.
Находим стороны треугольника SDC:
DC = √(17² - (1/2)4√7)²) = √(289 - 28) = √261 = 16.15549.
SD = √(8² - (1/2)4√7)²) = √(64 - 28) = √36 = 6.
Высота из вершины S является высотой пирамиды SО.
Находим её по формуле:
Подставим значения:
a b c p 2p
16.155494 15 6 18.577747 37.15549442
и получаем высоту SО = 90 / √261 = 30 / √29 = 5.570860145.
Площадь основания пирамиды находим по формуле Герона:
a b c p 2p S
17 17 10.583005 22.291503 44.58300524 85.48684109.
Площадь основания можно выразить так:
S = 85.48684109 = √7308 = 6√(7*29).
Тогда получаем объём пирамиды:
V = (1/3)S*H = (1/3)*(6√(7*29))*(30/√29) = 60/√7 = 22,67787 куб. ед.
Відповідь:
Шень А.
Ш47 Вероятность: примеры и задачи. | 2-е изд., стереотипное. | М.:
МЦНМО, 2008. | 64 с.
ISBN 978-5-94057-284-8
На примерах излагаются первые понятия теории вероятностей (вероятность события, правила подсчёта вероятностей, условная вероятность, независимость событий, случайная величина, математическое ожидание, дисперсия).
Брошюра рассчитана на школьников и учителей, свободно оперирующих с дробями
и процентами.
Первое издание книги вышло в 2007 г.
ББК 22.1
Оригинал-макет предоставлен автором. Рисунок на обложке выполнен
А. Верещагиной и публикуется с её разрешения.
Книга является свободно рас электронная версия доступна
по адресу ftp://ftp.mccme.ru/users/shen/proba.zip
Автор благодарен Ю. Н. Тюрину, А. А. Макарову, И. Р. Высоцкому и
И. В. Ященко, без которых эта брошюра никогда не была бы написана.
Рецензент и редактор Николай Александрович Яковлев
Покрокове пояснення: