Номер 1463 решите системы уравнений по этому образцу
образец
{(2х-3у=4 │•(7),7х-5у=25 ⃓∙(-2) )┤
+{(14х-21у=28,@-14х+10у=-50;@)┤
-11у= -22
у = -22 :(-11)
у=2
Подставив это значение у в первое уравнение системы 2х-3у=4, получим
2х-3∙2=4
2х -6= 4
2х= 4+6
2х= 10
х= 10:2
х=5
Проверка {(2•5-3•2=4, 7•5-5•2=25;)┤ (4=4,25=25.)┤
ответ (5;2)
Условие 1. Все 5 внуков получили пирожки;
Условие 2: Каждый внук получил не меньше 1 пирожка.
Что может быть верно?
А) кто-то то получил 6 пирожков , а кто-то то - 2.
10 ( пирожков всего) - 6 (получил кто-то из 5 внуков)=4 (пирожка осталось). Значит остальные 4 внука должны получить как минимум по 1 пирожку (4*1=4). Значит 2 пирожка не смог бы получить никто.
ОТВЕТ: НЕВЕРНО
Б) Четыре внука получили по 1 пирожку
4 (внука)*1 (по одному пирожку)=4 (пирожка), а пятый внук мог получить от одного до шести пирожков (по желанию).
ответ: ВЕРНО.
В) Два внука получили по 4 пирожка.
2 *4 = 8 пирожков получили два внука. Значит, 10-8=2 пирожка нужно разделить на трех внуков (2:3<1). Не соответствует условию 2, ведь каждый внук получил как минимум по 1 пирожку.
ответ: НЕВЕРНО.
Г) Три внука получили по 3 пирожка.
3*3=9 пирожков. Остальные два внука (5-3=2) получили 1 пирожок на двоих. Не соответствует второму условию.
ответ: НЕВЕРНО.
Д) Ровно четыре внука получили по 2 пирожка.
Не соответствует первому условию, все 5 внуков получили пирожки, а не только (ровно) 4 внука.
ответ: НЕВЕРНО.
Единственный верный вариант: Б) Четыре внука получили по 1 пирожку
Наибольший результат получим, если числа KAN и GA будет как можно больше, а число ROO как можно меньше.
Начнем с чисел KAN и GA: K=9 как цифра в самом старшем разряде. Далее цифрам А и G необходимо присвоить значения 8 и 7, причем именно в таком порядке, поскольку А встретится еще раз в разряде единиц, поэтому нам выгодно присвоить ей наибольшее значение. Последняя цифра N=6.
Для числа ROO поступим наоборот: старшем разряду присвоим наименьшее возможное значение: R=1, далее O=2.
Итого: 986+78-122=942
ответ: 942