1- меньшая, 4 - большая сторона.1. сначала выпишем варианты: 123 = 33 (т.к. суммы самых маленьких дадут самое маленькое число)124 = 37134 = 39234 = 412.ищем на сколько каждая сторона (2,3,4) больше первой.пример: выберем 1 и 4 вариант. видим, что в обоих есть 2 и 3 сторона(убираем их) => 41-33 = 8 это и есть разница между 1 и 4 стороной. 3. получилось: 4> 1 на 83> 1 на 42> 1 на 24. выбираем 4 случай(самый большой) т.к. там нет единицы. уравнение: 2+3+4=41пусть x - 1 первая сторона, тогда: x+2+x+4+x+8=413x+14=413x=27x=9 ( самая маленькая сторона)5. 1=92=113=134=17p= 9+11+13+17 = 50
На основании определения функции каждому значению аргумента х из области определения R ( все действительные числа ) соответствует единственное значение функции y , равное x 2.
Например, при х = 3 значение функции y = 3 2 = 9 , а при х = –2 значение функции y = (–2) 2 = 4 .
Изобрази график функции y = x 2 . Для этого присвой аргументу х несколько значений, вычисли соответствующие значения функции и внеси их в таблицу.
Если: x = –3 , x = –2 , x = –1 , x = 0 , x = 1 , x = 2 , x = 3 ,
то: y = 9 , y = 4 , y = 1 , y = 0 , y = 1 , y = 4 , y = 9 .
Нанеси точки с вычисленными координатами (x ; y) на плоскость и соедини их плавной непрерывной кривой. Эта кривая, называющаяся параболой, и есть график исследуемой тобой функции.
На графике видно, что ось OY делит параболу на симметричные левую и правую части (ветви параболы), в точке с координатами (0; 0) (вершине параболы) значение функции x 2 — наименьшее. Наибольшего значения функция не имеет. Вершина параболы — это точка пересечения графика с осью симметрии OY .
На участке графика при x ∈ (– ∞; 0 ] функция убывает, а при x ∈ [ 0; + ∞) возрастает.
Функция y = x 2 является частным случаем квадратичной функции.
Рассмотрим ещё несколько её вариантов. Например, y = – x 2 .
Графиком функции y = – x 2 также является парабола, но её ветви направлены вниз.
График функции y = x 2 + 3 — такая же парабола, но её вершина находится в точке с координатами (0; 3) .
из области определения R ( все действительные числа )
соответствует единственное значение функции y , равное x 2.
Например, при х = 3 значение функции y = 3 2 = 9 ,
а при х = –2 значение функции y = (–2) 2 = 4 .
Изобрази график функции y = x 2 . Для этого присвой
аргументу х несколько значений, вычисли соответствующие значения
функции и внеси их в таблицу.
Если: x = –3 , x = –2 , x = –1 , x = 0 , x = 1 , x = 2 , x = 3 ,
то: y = 9 , y = 4 , y = 1 , y = 0 , y = 1 , y = 4 , y = 9 .
Нанеси точки с вычисленными координатами (x ; y) на плоскость и
соедини их плавной непрерывной кривой. Эта кривая, называющаяся
параболой, и есть график исследуемой тобой функции.
На графике видно, что ось OY делит параболу на симметричные
левую и правую части (ветви параболы), в точке с координатами (0; 0)
(вершине параболы) значение функции x 2 — наименьшее.
Наибольшего значения функция не имеет. Вершина параболы — это
точка пересечения графика с осью симметрии OY .
На участке графика при x ∈ (– ∞; 0 ] функция убывает,
а при x ∈ [ 0; + ∞) возрастает.
Функция y = x 2 является частным случаем квадратичной функции.
Рассмотрим ещё несколько её вариантов. Например, y = – x 2 .
Графиком функции y = – x 2 также является парабола,
но её ветви направлены вниз.
График функции y = x 2 + 3 — такая же парабола, но её вершина
находится в точке с координатами (0; 3) .