В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
MaaximKa228
MaaximKa228
17.06.2020 22:43 •  Математика

Носки считаются парой, если они имеют один цвет. наугад из ящика с носками двух разных цветов выбирается три произвольных носка. найдите вероятность того, что среди выбранных встретится хотя бы одна пара носков?

Показать ответ
Ответ:
Ddddd46763
Ddddd46763
20.01.2024 13:07
Для решения этой задачи нужно использовать комбинаторику и определить количество благоприятных исходов (событий, которые нужно подсчитать) и общее количество возможных исходов (общее число исходов).

Поскольку в ящике находятся носки двух разных цветов, можно выделить 2 группы носков: носки первого цвета и носки второго цвета.

Общее количество исходов равно числу способов выбрать 3 носка из всех находящихся в ящике. Известно, что в ящике есть носки обоих цветов, поэтому общее количество исходов можно определить, используя числа сочетаний. Число сочетаний C(n, k) равно количеству способов выбрать k элементов из n без учета порядка. В нашем случае n = 6 (так как в ящике всего 6 носков - 3 первого и 3 второго цвета), k = 3 (так как мы выбираем 3 носка).

Таким образом, общее количество исходов равно C(6, 3) = 20.

Теперь нужно определить число благоприятных исходов - количество способов выбрать 3 носка так, чтобы среди них была хотя бы одна пара носков.

Мы можем рассмотреть следующие случаи:
1) Выбор 3 носков одного цвета. В этом случае у нас будет пара, поэтому все 3 носка должны быть того же цвета. Количество способов выбрать 3 носка одного цвета равно C(3, 3) * C(3, 3) = 1.
2) Выбор 2 носков одного цвета и 1 носка другого цвета. В этом случае у нас также будет пара. Мы можем выбрать 2 носка одного цвета из носков первого цвета (C(3, 2) способов) и 1 носок другого цвета из носков второго цвета (C(3, 1) способов). Общее число способов для этого случая равно C(3, 2) * C(3, 1) = 9.
3) Выбор 1 носка одного цвета и 2 носков другого цвета. Также будет пара. Мы можем выбрать 1 носок одного цвета из носков первого цвета (C(3, 1) способов) и 2 носка другого цвета из носков второго цвета (C(3, 2) способов). Общее число способов для этого случая равно C(3, 1) * C(3, 2) = 9.

Теперь нужно сложить все благоприятные исходы:

1 + 9 + 9 = 19

Таким образом, число благоприятных исходов равно 19.

Теперь, чтобы найти вероятность того, что среди выбранных носков будет хотя бы одна пара, нужно разделить число благоприятных исходов на общее количество исходов:

Вероятность = число благоприятных исходов / общее количество исходов
Вероятность = 19 / 20

Таким образом, вероятность того, что среди выбранных носков встретится хотя бы одна пара носков, равна 19/20 или 0.95 (округленно до двух знаков после запятой).
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота