Положим так. Если А1 танцевал с Б1, а А2 танцевал с Б2, то А1 танцевал с Б2, а А2 танцевал с Б1. Есть какое-то множество девочек М1, с которыми танцевал мальчик А1; и множество девочек М2, с которыми танцевал мальчик Б2. Оба множества непусты ввиду первых двух предложений.
Гипотеза указывает, что мальчик А1 танцевал с любой девочкой из М2. Множество М1 можно пополнять до тех пор, пока остаются другие нерассмотренные мальчики помимо А1; и если множество М1 ещё не включает всех девочек, то, ввиду предложения о наличии затанцованного мальчика для каждой девочки, такие мальчики остаются. Значит, А1 танцевал со всеми девочками, противоречие.
Тогда, сумма чисел во втором столбце равна S+2020, так как каждое из чисел этого столбца на 1 больше соответствующего числа из первого столбца. По аналогии, сумма чисел в третьем столбце равна S+2·2020, и так далее, сумма чисел в последнем столбце равна S+2019·2020.
Таким образом, был получен набор чисел:
S, S+2020, S+2·2020, S+3·2020, ..., S+2019·2020.
Покажем, что между ними можно расставить знаки "+" и "-" так, чтобы сумма чисел в точности была равна нулю.
Перед крайними слева и справа числами S и S+2019·2020 поставим знаки "+". Перед соседними с ними числами S+2020 и S+2018·2020 поставим знаки "-". Заметим, что сумма четырех рассмотренных чисел равна нулю:
S + (S+2019·2020) - (S+2020) - (S+2018·2020) = 0
Таким образом, знаки при движении от левого числа к середине и от правого края к середине будут чередоваться: "+", "-", "+", "-", ..., "-", "+".
Однако, в середине этой суммы знаки "встретятся" и в результате этого в сумме будут находиться такие слагаемые:
Положим так. Если А1 танцевал с Б1, а А2 танцевал с Б2, то А1 танцевал с Б2, а А2 танцевал с Б1. Есть какое-то множество девочек М1, с которыми танцевал мальчик А1; и множество девочек М2, с которыми танцевал мальчик Б2. Оба множества непусты ввиду первых двух предложений.
Гипотеза указывает, что мальчик А1 танцевал с любой девочкой из М2. Множество М1 можно пополнять до тех пор, пока остаются другие нерассмотренные мальчики помимо А1; и если множество М1 ещё не включает всех девочек, то, ввиду предложения о наличии затанцованного мальчика для каждой девочки, такие мальчики остаются. Значит, А1 танцевал со всеми девочками, противоречие.
Пусть сумма чисел в первом столбце равна S.
Тогда, сумма чисел во втором столбце равна S+2020, так как каждое из чисел этого столбца на 1 больше соответствующего числа из первого столбца. По аналогии, сумма чисел в третьем столбце равна S+2·2020, и так далее, сумма чисел в последнем столбце равна S+2019·2020.
Таким образом, был получен набор чисел:
S, S+2020, S+2·2020, S+3·2020, ..., S+2019·2020.
Покажем, что между ними можно расставить знаки "+" и "-" так, чтобы сумма чисел в точности была равна нулю.
Перед крайними слева и справа числами S и S+2019·2020 поставим знаки "+". Перед соседними с ними числами S+2020 и S+2018·2020 поставим знаки "-". Заметим, что сумма четырех рассмотренных чисел равна нулю:
S + (S+2019·2020) - (S+2020) - (S+2018·2020) = 0
Таким образом, знаки при движении от левого числа к середине и от правого края к середине будут чередоваться: "+", "-", "+", "-", ..., "-", "+".
Однако, в середине этой суммы знаки "встретятся" и в результате этого в сумме будут находиться такие слагаемые:
... + (S+1008·2020) - (S+1009·2020) - (S+1010·2020) + (S+1011·2020) - ...
В результате такой расстановки знаков, сумма чисел окажется равна нулю.
ответ: 0