В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
lozinskayaeliz
lozinskayaeliz
25.09.2020 16:38 •  Математика

Нужен ответ решите нужен ответ!!​

Показать ответ
Ответ:
malinka149
malinka149
25.01.2021 15:54

Стоит обратить внимание, на то что счет начинается с 1 и идёт последовательно, пока не повторится буква, та что была ранее, она и сбивает счёт обозначаясь под своим номером, дальше каждая новая буква продолжает счет, например

1  2+3+4+5, 6+4+6  7+8+9+4+10+11

я  з  н  а  ю,к  а  к   р  е  ш  а   т    ь

Здесь до буквы "к" включительно были новые буквы, соответственно счет  был последовательным, после первой "к" повторилась буква "а"- её номер был 4 эта цифра зашифровалась, далее "к" повторилась и снова цифра 6, потом пошли новые буквы и последовательность продолжилась

0,0(0 оценок)
Ответ:
AzamatAmangaliev1
AzamatAmangaliev1
25.01.2021 15:54

Главная проблема использования одноключевых (симметричных) криптосистем заключается в распределении ключей. Для того, чтобы был возможен обмен информацией между двумя сторонами, ключ должен быть сгенерирован одной из них, а затем в конфиденциальном порядке передан другой. Особую остроту данная проблема приобрела в наши дни, когда криптография стала общедоступной, вследствие чего количество пользователей больших криптосистем может исчисляться сотнями и тысячами.

Начало асимметричным шифрам было положено в работе «Новые направления в современной криптографии» Уитфилда Диффи и Мартина Хеллмана, опубликованной в 1976 году. Находясь под влиянием работы Ральфа Меркле (Ralph Merkle) о рас открытого ключа, они предложили метод получения секретных ключей для симметричного шифрования, используя открытый канал. В 2002 году Хеллман предложил называть данный алгоритм «Диффи - Хеллмана - Меркле», признавая вклад Меркле в изобретение криптографии с открытым ключом.

Хотя работа Диффи-Хеллмана создала большой теоретический задел для открытой криптографии, первой реальной криптосистемой с открытым ключом считают алгоритм RSA (названный по имени авторов - Рон Ривест (Ronald Linn Rivest), Ади Шамир (Adi Shamir) и Леонард Адлеман (Leonard Adleman) из Массачусетского Технологического Института (MIT)).

Справедливости ради следует отметить, что в декабре 1997 года была обнародована информация, согласно которой британский математик Клиффорд Кокс (Clifford Cocks), работавший в центре правительственной связи (GCHQ) Великобритании, описал систему, аналогичную RSA, в 1973 году, а несколькими месяцами позже в 1974 году Малькольм Вильямсон изобрел математический алгоритм, аналогичный алгоритму Диффи – Хеллмана - Меркле.

Суть шифрования с открытым ключом заключается в том, что для шифрования данных используется один ключ, а для расшифрования другой (поэтому такие системы часто называют асимметричными).

Основная предпосылка, которая привела к появлению шифрования с открытым ключом, заключалось в том, что отправитель сообщения (тот, кто зашифровывает сообщение), не обязательно должен быть его расшифровывать. Т.е. даже имея исходное сообщение, ключ, с которого оно шифровалось, и зная алгоритм шифрования, он не может расшифровать закрытое сообщение без знания ключа расшифрования.

Первый ключ, которым шифруется исходное сообщение, называется открытым и может быть опубликован для использования всеми пользователями системы. Расшифрование с этого ключа невозможно. Второй ключ, с которого дешифруется сообщение, называется секретным (закрытым) и должен быть известен только законному получателю закрытого сообщения.

Алгоритмы шифрования с открытым ключом используют так называемые необратимые или односторонние функции. Эти функции обладают следующим свойством: при заданном значении аргумента х относительно вычислить значение функции (x), однако, если известно значение функции y = f(x), то нет пути для вычисления значения аргумента x. Например, функция SIN. Зная x, легко найти значение SIN(x) (например, x = , тогда SIN() = 0). Однако, если SIN(x) = 0, однозначно определить х нельзя, т.к. в этом случае х может быть любым числом, определяемым по формуле i * , где i – целое число.

Однако не всякая необратимая функция годится для использования в реальных криптосистемах. В их числе и функция SIN. Следует также отметить, что в самом определении необратимости функции присутствует неопределенность. Под необратимостью понимается не теоретическая необратимость, а практическая невозможность вычислить обратное значение, используя современные вычислительные средства за обозримый интервал времени.

Пошаговое объяснение:

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота