В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
cifirka5
cifirka5
22.08.2020 22:36 •  Математика

НУЖНА !
Вопрос в закрепленой фотографии


НУЖНА ! Вопрос в закрепленой фотографии

Показать ответ
Ответ:
123тася321
123тася321
25.05.2021 12:02

Общее количество учеников во всех трёх классах равно 28+24+20 = 72. Так как 72 делится на 3, то равенство количества учеников во всех трёх классах возможно - в каждом классе будет по 72/3 = 24 ученика.

 

Из условия задачи не ясно, сколько переводов из класса в класс допускается - один или два (три перевода и более могут быть заменены эквивалентными одним или двумя), поэтому вторую часть задачи решим исходя из более жёсткого ограничения (один перевод):

 

Задача имеет решение, например, для троек:

21, 25, 29

21, 26, 31

19, 22, 25

20, 21, 22

и много других.

 

Третью часть задачи решим исходя из более мягкого ограничения (два перехода):

 

Задача не имеет решения, например, для троек:

21, 22, 24

22, 25, 27

23, 25, 28

и так далее (во всех указанных случаях общее число учеников не делится на 3).

 

Указанные ответы во второй и третьей части универсальны - годятся как для жёсткого, так и для мягкого ограничения (при сдаче решения про эти ограничения лучше вообще не упоминать, они даны только для разъяснения) 

0,0(0 оценок)
Ответ:
vegeg
vegeg
09.10.2020 18:03

ответ:

всего лишь 3

пошаговое объяснение:

пронумеруем монеты числами от 1 до 12. взвесим монеты 1—4 с монетами 5—8.

1) если весы в равновесии, то все монеты на них настоящие. взвесим   с  

если весы и сейчас в равновесии, то фальшивая — 12 и, взвешивая ее с 1, определим, легче она или тяжелее.

если же равновесия нет, то фальшивая среди монет 9—11, и мы знаем ее тип (легче она или тяжелее). из трех монет можно найти фальшивую за одно взвешивание (см. пункт а)

2) если одна чашка перевесила. пусть, например, это чашка 1—4. тогда либо одна из них тяжелее настоящих, либо одна из 5—8 легче настоящих.

взвесим 1, 2, 5 и 3, 4, 6.

если весы в равновесии, то взвесим 7 и 8 — фальшивая та из них, которая легче.

если одна чашка перевесила, то пусть, например, это чашка 1, 2, 5. это означает, что фальшивая либо 1 либо 2 (тяжелее настоящей), либо 6 (легче настоящей). взвешивая 1 и 2, мы определим, какая ситуация реализовалась.

докажем, что за 2 взвешивания сделать этого нельзя. допустим, есть такой алгоритм. при его выполнении может произойти 9 вариантов (3 результата первого взвешивания и в каждом из них три результата второго взвешивания). по этим вариантам мы должны назвать фальшивую монету однозначно. но поскольку монет 12, то какую-то из них наш алгоритм никогда не назовет фальшивой. значит, если именно она фальшивая, алгоритм даст неправильный ответ

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота