Общее количество учеников во всех трёх классах равно 28+24+20 = 72. Так как 72 делится на 3, то равенство количества учеников во всех трёх классах возможно - в каждом классе будет по 72/3 = 24 ученика.
Из условия задачи не ясно, сколько переводов из класса в класс допускается - один или два (три перевода и более могут быть заменены эквивалентными одним или двумя), поэтому вторую часть задачи решим исходя из более жёсткого ограничения (один перевод):
Задача имеет решение, например, для троек:
21, 25, 29
21, 26, 31
19, 22, 25
20, 21, 22
и много других.
Третью часть задачи решим исходя из более мягкого ограничения (два перехода):
Задача не имеет решения, например, для троек:
21, 22, 24
22, 25, 27
23, 25, 28
и так далее (во всех указанных случаях общее число учеников не делится на 3).
Указанные ответы во второй и третьей части универсальны - годятся как для жёсткого, так и для мягкого ограничения (при сдаче решения про эти ограничения лучше вообще не упоминать, они даны только для разъяснения)
пронумеруем монеты числами от 1 до 12. взвесим монеты 1—4 с монетами 5—8.
1) если весы в равновесии, то все монеты на них настоящие. взвесим с
если весы и сейчас в равновесии, то фальшивая — 12 и, взвешивая ее с 1, определим, легче она или тяжелее.
если же равновесия нет, то фальшивая среди монет 9—11, и мы знаем ее тип (легче она или тяжелее). из трех монет можно найти фальшивую за одно взвешивание (см. пункт а)
2) если одна чашка перевесила. пусть, например, это чашка 1—4. тогда либо одна из них тяжелее настоящих, либо одна из 5—8 легче настоящих.
взвесим 1, 2, 5 и 3, 4, 6.
если весы в равновесии, то взвесим 7 и 8 — фальшивая та из них, которая легче.
если одна чашка перевесила, то пусть, например, это чашка 1, 2, 5. это означает, что фальшивая либо 1 либо 2 (тяжелее настоящей), либо 6 (легче настоящей). взвешивая 1 и 2, мы определим, какая ситуация реализовалась.
докажем, что за 2 взвешивания сделать этого нельзя. допустим, есть такой алгоритм. при его выполнении может произойти 9 вариантов (3 результата первого взвешивания и в каждом из них три результата второго взвешивания). по этим вариантам мы должны назвать фальшивую монету однозначно. но поскольку монет 12, то какую-то из них наш алгоритм никогда не назовет фальшивой. значит, если именно она фальшивая, алгоритм даст неправильный ответ
Общее количество учеников во всех трёх классах равно 28+24+20 = 72. Так как 72 делится на 3, то равенство количества учеников во всех трёх классах возможно - в каждом классе будет по 72/3 = 24 ученика.
Из условия задачи не ясно, сколько переводов из класса в класс допускается - один или два (три перевода и более могут быть заменены эквивалентными одним или двумя), поэтому вторую часть задачи решим исходя из более жёсткого ограничения (один перевод):
Задача имеет решение, например, для троек:
21, 25, 29
21, 26, 31
19, 22, 25
20, 21, 22
и много других.
Третью часть задачи решим исходя из более мягкого ограничения (два перехода):
Задача не имеет решения, например, для троек:
21, 22, 24
22, 25, 27
23, 25, 28
и так далее (во всех указанных случаях общее число учеников не делится на 3).
Указанные ответы во второй и третьей части универсальны - годятся как для жёсткого, так и для мягкого ограничения (при сдаче решения про эти ограничения лучше вообще не упоминать, они даны только для разъяснения)
ответ:
всего лишь 3
пошаговое объяснение:
пронумеруем монеты числами от 1 до 12. взвесим монеты 1—4 с монетами 5—8.
1) если весы в равновесии, то все монеты на них настоящие. взвесим с
если весы и сейчас в равновесии, то фальшивая — 12 и, взвешивая ее с 1, определим, легче она или тяжелее.
если же равновесия нет, то фальшивая среди монет 9—11, и мы знаем ее тип (легче она или тяжелее). из трех монет можно найти фальшивую за одно взвешивание (см. пункт а)
2) если одна чашка перевесила. пусть, например, это чашка 1—4. тогда либо одна из них тяжелее настоящих, либо одна из 5—8 легче настоящих.
взвесим 1, 2, 5 и 3, 4, 6.
если весы в равновесии, то взвесим 7 и 8 — фальшивая та из них, которая легче.
если одна чашка перевесила, то пусть, например, это чашка 1, 2, 5. это означает, что фальшивая либо 1 либо 2 (тяжелее настоящей), либо 6 (легче настоящей). взвешивая 1 и 2, мы определим, какая ситуация реализовалась.
докажем, что за 2 взвешивания сделать этого нельзя. допустим, есть такой алгоритм. при его выполнении может произойти 9 вариантов (3 результата первого взвешивания и в каждом из них три результата второго взвешивания). по этим вариантам мы должны назвать фальшивую монету однозначно. но поскольку монет 12, то какую-то из них наш алгоритм никогда не назовет фальшивой. значит, если именно она фальшивая, алгоритм даст неправильный ответ