Построим высоту АН к стороне ВС. в прямоугольном треугольнике АВН угол В = 45 градусов (по условию), тогда угол ВАН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = АН. известно, что АВ = 10, пусть АН = ВН = х, тогда по теореме Пифагора 100 = х^2 + x^2; 100 = 2x^2; x^2 = 50; х = корень из 50;
треугольник АНС - прямоугольный. угол С = 60 градусов (по условию), тогда угол НАС = 90 - 60 = 30 градусов. пусть АС = 2х, тогда СН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы). по теореме Пифагора 4х^2 = 50 + х^2; 3х^2 = 50; х^2 = 50/3; х = 5 корней из 2/3 АС=2*5 корней из 2/3= 10 корней из 2/3
в прямоугольном треугольнике АВН угол В = 45 градусов (по условию), тогда угол ВАН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = АН.
известно, что АВ = 10, пусть АН = ВН = х,
тогда по теореме Пифагора 100 = х^2 + x^2; 100 = 2x^2; x^2 = 50; х = корень из 50;
треугольник АНС - прямоугольный.
угол С = 60 градусов (по условию), тогда угол НАС = 90 - 60 = 30 градусов.
пусть АС = 2х, тогда СН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы).
по теореме Пифагора 4х^2 = 50 + х^2; 3х^2 = 50; х^2 = 50/3; х = 5 корней из 2/3
АС=2*5 корней из 2/3= 10 корней из 2/3
b = 2 * 3 * 3 * 5 * 5 * 7 = 3150
НОК (2625 и 3150) = 2 * 3 * 3 * 5 * 5 * 5 * 7 = 15750 - наименьшее общее кратное
15750 : 2625 = 6
15750 : 3150 = 5
а = 2 * 2 * 2 * 2 * 3 * 3 * 5 = 720
b = 2 * 2 * 3 * 3 * 3 = 108
НОК (720 и 108) = 2 * 2 * 2 * 2 * 3 * 3 * 3 * 5 = 2160 - наименьшее общее кратное
2160 : 720 = 3
2160 : 108 = 20
2 1/2 : (1 5/9 - 1/6) - 3,3 = - 1,5
1) 1 5/9 - 1/6 = 1 10/18 - 3/18 = 1 7/18
2) 2 1/2 : 1 7/18 = 5/2 : 25/18 = 5/2 * 18/25 = (1*9)/(1*5) = 9/5 = 1,8
3) 1,8 - 3,3 = - 1,5