-3 получается потому что, если из 2 вычесть 5, будет равно -3. Но стоит заметить, что перед х стоит знак минус, поэтому, чтобы узнать положительное значение x, нужно обе части уравнения умножить на -1, то есть: -х*(-1) = -3*(-1) Если выполнить все действия арифметики, то получится решение х=3, как у нас и получилось в первом решения уравнения. На самом деле, уравнения несложно решаются, как первым, так и вторым но, исходя из школьной практики, можно отметить, что чаще выбирают второй для решения подобных уравнений- неизвестные составляющие уравнения(корни) перемещать в одну сторону от знака = , а известные в другую.
ответ: 8 пар.
Объяснение:
Раскрыв скобки, получаем:
Перенесем слагаемые с переменными влево, а свободный член — вправо:
Из обеих частей уравнения вычтем :
Разложим левую часть на множители методом группировки:
К обеим частям уравнения прибавим выражение :
Вынесем общий множитель за скобки:
Вынесем :
Так значения m и n целые (по нужному условию), значения выражений в скобках не могут быть дробными.
Произведение двух целых чисел равно в восьми случаях:
1) ;
2) ;
3) ;
4) ;
5) ;
6) ;
7) ;
8) .
Определим, какие будут значения m и n, если значения выражений в скобках равны множителям из каждого случая:
1)
Получаем:
Значит, (m,n) = (0; -13).
Аналогично рассмотрим следующие случаи:
2)
(m,n) = (-2; 5).
3)
(m,n) = (-11; -13).
4)
(m,n) = (9; 5).
5)
(m,n) = (-3; -1).
6)
(m,n) = (1; -7).
7)
(m,n) = (4; -1).
8)
(m,n) = (-6; -7).
Выходит, 8 пар целых чисел (m, n) удовлетворяют данное равенство.
Если выполнить все действия арифметики, то получится решение х=3, как у нас и получилось в первом решения уравнения. На самом деле, уравнения несложно решаются, как первым, так и вторым но, исходя из школьной практики, можно отметить, что чаще выбирают второй для решения подобных уравнений- неизвестные составляющие уравнения(корни) перемещать в одну сторону от знака = , а известные в другую.