Пошаговое объяснение:
y=4-x^3/x^2
Область определения функции:
х∈(-∞,0)U(0,∞)
Пересечение с осью абсцисс (ОХ):
4-х^3/x^2=0⇔x=∛4
Поведение функции в ограниченных точках области определения:
х=0, limx->0 4-x^3/x^2=∞
Поведение функции на бесконечности:
limx->∞ 4-x^3/x^2=-∞
limx->-∞ 4-x^3/x^2=∞
Наклонная асимптота функции:
у=-х
Исследование функции на четность/нечетность:
f(x)=-x^3-4/x^2
f(-x)=x^3+4/x^2
Функция является не четной, ни нечетной.
Производная функции:
-2*((4-х^3)/х^3)-3
Нули производной:
х=-2
Функция возрастает на:
х∈[-2,0)
Функция убывает на:
х∈(-∞,-2]U(0,∞)
Минимальное значение функции: -∞
Максимальное значение функции: ∞
График во вложениях.
треугольники AOD и BOC подобны по трем углам:
уг.AOD-общий
уг.OCB=уг.ODA (они прямые)
уг.OBC=уг.OAD (вытекает из предыдущих равенств)
Т.к. эти треугольники подобны, отношения соответсвующих сторон равны, т.е.
BC/AD=BO/AO
подставляем числа и находим BO:
2/5=BO/25
5*BO=2*25
5*BO=50
BO=10
Теперь находим отношение площадей:
S(BOC)/S(AOD)=(1/2*OC*BC)/(1/2*OD*AD)=OC*BC/OD*AD=OC/OD*BC/AD
BC/AD=2/5
так как отношение соответсвующих сторон равны OC/OD=BC/AD=2/5
S(BOC)/S(AOD)=2/5*2/5=4/25=0,16
ответ: BO=10, отношение площадей = 0,16.
Пошаговое объяснение:
y=4-x^3/x^2
Область определения функции:
х∈(-∞,0)U(0,∞)
Пересечение с осью абсцисс (ОХ):
4-х^3/x^2=0⇔x=∛4
Поведение функции в ограниченных точках области определения:
х=0, limx->0 4-x^3/x^2=∞
Поведение функции на бесконечности:
limx->∞ 4-x^3/x^2=-∞
limx->-∞ 4-x^3/x^2=∞
Наклонная асимптота функции:
у=-х
Исследование функции на четность/нечетность:
f(x)=-x^3-4/x^2
f(-x)=x^3+4/x^2
Функция является не четной, ни нечетной.
Производная функции:
-2*((4-х^3)/х^3)-3
Нули производной:
х=-2
Функция возрастает на:
х∈[-2,0)
Функция убывает на:
х∈(-∞,-2]U(0,∞)
Минимальное значение функции: -∞
Максимальное значение функции: ∞
График во вложениях.
треугольники AOD и BOC подобны по трем углам:
уг.AOD-общий
уг.OCB=уг.ODA (они прямые)
уг.OBC=уг.OAD (вытекает из предыдущих равенств)
Т.к. эти треугольники подобны, отношения соответсвующих сторон равны, т.е.
BC/AD=BO/AO
подставляем числа и находим BO:
2/5=BO/25
5*BO=2*25
5*BO=50
BO=10
Теперь находим отношение площадей:
S(BOC)/S(AOD)=(1/2*OC*BC)/(1/2*OD*AD)=OC*BC/OD*AD=OC/OD*BC/AD
BC/AD=2/5
так как отношение соответсвующих сторон равны OC/OD=BC/AD=2/5
S(BOC)/S(AOD)=2/5*2/5=4/25=0,16
ответ: BO=10, отношение площадей = 0,16.
Пошаговое объяснение: