Большая сторона первоначального прямоугольника x.
Есть два возможный варианта: 1) прямоугольник разрезали по меньшей стороне; 2) прямоугольник разрезали по большей стороне. Рассмотрим их оба:
1) пусть одна сторона первого прямоугольника y, тогда вторая 6-y. Вторые стороны у обоих x.
Площади: xy кв.ед. у первого, x·(6-y) кв.ед. у второго. У первого в 3 раза больше:
xy = 3x·(6-y)
Периметры: (x+y)·2 у первого, (x+6-y)·2 у второго. У первого в 2 раза больше:
(x+y)·2 = 2·(x+6-y)·2
Составим и решим систему уравнений:
Большая сторона первоначального прямоугольника 1,5.
2) пусть одна сторона первого прямоугольника y, тогда вторая x-y. Вторые стороны у обоих 6.
Площади: 6y кв.ед. у первого, 6(x-y) кв.ед. у второго. У первого в 3 раза больше:
6y = 3·6(x-y)
Периметры: у первого (y+6)·2, у второго (x-y+6)·2, у первого в 2 раза больше:
(y+6)·2 = 2·(x-y+6)·2.
Большая сторона первоначального прямоугольника 24.
ответ: 1,5 или 24.
Пошаговое объяснение:
Рассмотрим ΔADC: ∠D = 90° (т.к. у прямоугольника все углы прямые); АС = 5 см
т. Пифагора (c² = a² + b²)
AC² = AD² + DC²
→ Пусть AD = х см, тогда DC = (х + 1) см.
5² = х² + (х + 1)²
х² + х² + 2х + 1 = 25
2х² + 2х - 24 = 0 |:2
х² + х - 12 = 0
а = 1; b = 1; с = -12 (формулу см. в первом вложении)
D = 1² - 4 * 1 * (-12) = 1 + 48 = 49 = 7²
фотка(она внизу)
т.к. сторона не может быть отрицательна, то
AD = 3 см
DC = 3 + 1 = 4 см
******************
P прямоугольника = (a + b) * 2, где а,b - стороны прямоугольника
(3 + 4) * 2 = 14 см - периметр данного прямоугольника
эта фотка должна быть в пустом месте
Большая сторона первоначального прямоугольника x.
Есть два возможный варианта: 1) прямоугольник разрезали по меньшей стороне; 2) прямоугольник разрезали по большей стороне. Рассмотрим их оба:
1) пусть одна сторона первого прямоугольника y, тогда вторая 6-y. Вторые стороны у обоих x.
Площади: xy кв.ед. у первого, x·(6-y) кв.ед. у второго. У первого в 3 раза больше:
xy = 3x·(6-y)
Периметры: (x+y)·2 у первого, (x+6-y)·2 у второго. У первого в 2 раза больше:
(x+y)·2 = 2·(x+6-y)·2
Составим и решим систему уравнений:
Большая сторона первоначального прямоугольника 1,5.
2) пусть одна сторона первого прямоугольника y, тогда вторая x-y. Вторые стороны у обоих 6.
Площади: 6y кв.ед. у первого, 6(x-y) кв.ед. у второго. У первого в 3 раза больше:
6y = 3·6(x-y)
Периметры: у первого (y+6)·2, у второго (x-y+6)·2, у первого в 2 раза больше:
(y+6)·2 = 2·(x-y+6)·2.
Составим и решим систему уравнений:
Большая сторона первоначального прямоугольника 24.
ответ: 1,5 или 24.
Пошаговое объяснение:
Рассмотрим ΔADC: ∠D = 90° (т.к. у прямоугольника все углы прямые); АС = 5 см
т. Пифагора (c² = a² + b²)
AC² = AD² + DC²
→ Пусть AD = х см, тогда DC = (х + 1) см.
5² = х² + (х + 1)²
х² + х² + 2х + 1 = 25
2х² + 2х - 24 = 0 |:2
х² + х - 12 = 0
а = 1; b = 1; с = -12 (формулу см. в первом вложении)
D = 1² - 4 * 1 * (-12) = 1 + 48 = 49 = 7²
фотка(она внизу)
т.к. сторона не может быть отрицательна, то
AD = 3 см
DC = 3 + 1 = 4 см
******************
P прямоугольника = (a + b) * 2, где а,b - стороны прямоугольника
(3 + 4) * 2 = 14 см - периметр данного прямоугольника
эта фотка должна быть в пустом месте