Был произведён один выстрел.
Гипотезы:
A₁ - стрелял первый стрелок,
A₂ - стрелял второй стрелок,
A₃ - стрелял третий стрелок.
Событие А - после выстрела мишень поражена.
P(A₁) = P(A₂) = P(A₃) = 1/3.
P(A|A₁) = 0,3
P(A|A₂) = 0,5
P(A|A₃) = 0,8
По формуле полной вероятности
P(A) = P(A₁)·P(A|A₁) + P(A₂)·P(A|A₂) + P(A₃)·P(A|A₃) =
= (1/3)·0,3 + (1/3)·0,5 + (1/3)·0,8 = 1,6/3.
По формуле Байеса
P(A₂·A) = P(A₂)·P(A|A₂),
P(A₂·A) = P(A)·P(A₂|A),
P(A)·P(A₂|A) = P(A₂)·P(A|A₂)
P(A₂|A) = P(A₂)·P(A|A₂)/P(A)
P(A₂|A) = ( (1/3)·0,5)/(1,6/3) = 0,5/1,6 = 5/16 = 0,3125.
ответ. 0,3125.
Был произведён один выстрел.
Гипотезы:
A₁ - стрелял первый стрелок,
A₂ - стрелял второй стрелок,
A₃ - стрелял третий стрелок.
Событие А - после выстрела мишень поражена.
P(A₁) = P(A₂) = P(A₃) = 1/3.
P(A|A₁) = 0,3
P(A|A₂) = 0,5
P(A|A₃) = 0,8
По формуле полной вероятности
P(A) = P(A₁)·P(A|A₁) + P(A₂)·P(A|A₂) + P(A₃)·P(A|A₃) =
= (1/3)·0,3 + (1/3)·0,5 + (1/3)·0,8 = 1,6/3.
По формуле Байеса
P(A₂·A) = P(A₂)·P(A|A₂),
P(A₂·A) = P(A)·P(A₂|A),
P(A)·P(A₂|A) = P(A₂)·P(A|A₂)
P(A₂|A) = P(A₂)·P(A|A₂)/P(A)
P(A₂|A) = ( (1/3)·0,5)/(1,6/3) = 0,5/1,6 = 5/16 = 0,3125.
ответ. 0,3125.
b·b=3·(a+c)
Выражение справа кратно 3, значит и слева должно быть кратно 3
b кратно 3
Из цифр только 3; 6; 9 кратны 3
1 случай b=3
3·3=3·(а+с) ⇒ 3=а+с
а=1 с=2 Число 132
а=2 с= 1 Число 231
а=3 с=0 Число 330
2 случай
b=6
6·6=3·(а+с)
12=а+с
а=9 с=3 Число 963
а=3 с=9 Число 369
Третий случай
b=9
9·9=3·(а+с)
27=а+с
1≤а≤9
0≤с≤9
В сумме 27 не получим
ответ. 132; 231; 330; 963; 369.