В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ЁшкинКот2479
ЁшкинКот2479
01.10.2022 11:29 •  Математика

Обчислити трикратні інтеграли:


Обчислити трикратні інтеграли:

Показать ответ
Ответ:
6a6yle4ka
6a6yle4ka
03.09.2020 03:55
7.3.1. Примеры для закрепления формул сокращенного умножения


1)    Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

       (a+b)2 = a2+2ab+b2 

  a) (x + 2y)2 = x2 + 2 ·x·2y + (2y)2 = x2 + 4xy + 4y2

б) (2k + 3n)2 = (2k)2 + 2·2k·3n + (3n)2 = 4k2 + 12kn + 9n2

2)    Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

        (a-b)2 = a2-2ab+b2

 а)   (2a – c)2 = (2a)2-2·2a·c + c2 = 4a2 – 4ac + c2

б)   (3a – 5b)2 = (3a)2-2·3a·5b + (5b)2 = 9a2 – 30ab + 25b2

3)    Разность квадратов двух выражений равна произведению разности самих выражений на их сумму.

         a2–b2 = (a–b)(a+b)

a)      9x2 – 16y2 = (3x)2 – (4y)2 = (3x – 4y)(3x + 4y)

б)  (6k – 5n)( 6k + 5n) = (6k)2 – (5n)2 = 36k2 – 25n2

4)  Куб суммы двух выражений равен кубу первого выражения плюс утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.

        (a+b)3 = a3+3a2b+3ab2+b3

a)  (m + 2n)3 = m3 + 3·m2·2n + 3·m·(2n)2 + (2n)3 = m3 + 6m2n + 12mn2 + 8n3

б)  (3x + 2y)3 = (3x)3 + 3·(3x)2·2y + 3·3x·(2y)2 + (2y)3 = 27x3 + 54x2y + 36xy2 + 8y3

5)  Куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.

(a-b)3 = a3-3a2b+3ab2-b3

а)  (2x – y)3 = (2x)3-3·(2x)2·y + 3·2x·y2 – y3 = 8x3 – 12x2y + 6xy2 – y3

б)  (x – 3n)3 = x3-3·x2·3n + 3·x·(3n)2 – (3n)3 = x3 – 9x2n + 27xn2 – 27n3

6)  Сумма кубов двух выражений равна произведению суммы самих выражений на неполный квадрат их разности.

a3+b3 = (a+b)(a2–ab+b2)

a)      125 + 8x3 = 53 + (2x)3 = (5 + 2x)(52 — 5·2x + (2x)2) = (5 + 2x)(25 – 10x + 4x2)

б)  (1 + 3m)(1 – 3m + 9m2) = 13 + (3m)3 = 1 + 27m3

7)  Разность кубов двух выражений равна произведению разности самих выражений на неполный квадрат их суммы.

 a3-b3 = (a-b)(a2+ab+b2)

а) 64с3 – 8 = (4с)3 – 23 = (4с – 2)((4с)2 + 4с·2 + 22) = (4с – 2)(16с2 + 8с + 4)

б) (3a – 5b)(9a2 + 15ab + 25b2) = (3a)3 – (5b)3 = 27a3 – 125b3

0,0(0 оценок)
Ответ:
мда28
мда28
13.08.2021 09:32
Поскольку нам известно, что не менее 20 студентов выполнили двух контрольных работ, сперва находим тех, кто выполнил менее 2 работ. Для этого поочередно отнимаем от числа выполнивших первую и вторую, вторую и третью, первую и третью работу тех, кто выполнил 2 работы. Получим: 33 - 20 = 13 студентов. 32 - 20 = 12 студентов. 31 - 20 = 11 студентов. Находим их общее число. 13 + 12 + 11 = 36 студентов (Выполнили одну из двух работ). Находим их количество: 36 / 2 = 18 студентов выполнили по 1 контрольной работе. НО НЕ УВЕРЕН
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота